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Abstract

We present a semi-implicit return mapping algorithm for integrating generic nonsmooth elasto-

plastic models. The semi-implicit nature of the algorithm stems from “freezing” the plastic

internal variables at their previous state, followed by implicitly integrating the stresses and

plastic multiplier. The plastic internal variables are incrementally updated once convergence

is achieved (a posteriori). Locally, the algorithm behaves as a classic return mapping for

perfect plasticity and, hence, inherits the stability of implicit integrators. However, it differs

from purely implicit integrators by keeping the plastic internal variables locally constant. This

feature affords the method the ability to integrate nonsmooth (C0) evolution laws that may

not be integrable using implicit methods. As a result, we propose and use the algorithm as

the backbone of a semi-concurrent multiscale framework, in which nonsmooth constitutive

relationships can be directly extracted from the underlying micromechanical processes and

faithfully incorporated into elastoplastic continuum models. Though accuracy of the proposed

algorithm is step size-dependent, its simplicity and its remarkable ability to handle nonsmooth

relations make the method promising and computationally appealing.
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1 Introduction

Elastoplasticity is perhaps the most widely utilized and reliable framework used to capture

material nonlinearities and inelastic behavior [1]. From metals to composites to aggregates,

most solids can be simulated using elastoplastic models. Furthermore, many elastoplastic

models make use of nonsmooth functions (in general, C0 functions) to either represent yield

surfaces [e.g., 2–4] or hardening (evolution) laws [e.g., 5; 6]. In the case of cohesive-frictional

materials, C0 yield surfaces have been proposed to model two salient properties. On the

one hand, the yield surface is generally dependent on the third invariant of stress. Using

multiple smooth functions to describe the third invariant dependency [2; 7] constituted one

major source for nonsmoothness. On the other hand, cohesive-frictional materials feature

very distinct responses under deviatoric and volumetric stresses. These two features have

been accounted for by proposing models with two distinct yield surfaces, providing a potential

source for discontinuities in the gradient function [3; 4; 8]. Nevertheless, the past decades

have seen a great advance in the development of smooth yield surfaces aimed at capturing

the behavior of complex geomaterials [5; 9–13]. Naturally, smooth plastic potentials can also

be derived based on their similarity to the yield surfaces.

In contrast, C0 functions are very much still used to describe the evolution of internal

plastic variables via nonsmooth hardening laws. It is well-known that the evolution of plastic

internal variables (PIVs) is difficult to obtain and is mostly based on phenomenology. Harden-

ing laws that conform well to experimental data may not necessarily yield smooth evolutions.

Unsurprisingly, many nonsmooth hardening laws have been proposed to capture the behav-

ior of complex elastoplastic materials accurately [5; 6]. In this paper, we refer to a relation

defining the variation of a PIV as an evolution law. Nonsmooth evolution laws permeate

the plasticity literature. Accurately handling these C0 evolution laws within a computational

framework is not a trivial task and defines the objective of this work.

From a physics standpoint, one limitation of plasticity models emanates from the underly-

ing phenomenology. Essentially, plasticity relations, especially evolution laws, are determined

from limited experiments or simply based on empirical intuition. Furthermore, a plasticity
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model only describes an average behavior at the macroscopic scale but fails to account for

the underlying microscale mechanisms. In contrast, multiscale computational approaches can

derive the constitutive relationship from a fundamental level ‘on-the-fly’ [14–18]. In particu-

lar, for granular matter this fundamental level corresponds to the grain scale, from which the

micromechanical phenomena—including particle geometry, force chains, fabric arrangement—

intrinsically govern the macroscopic response of the material. These grain-scale phenomena

can be explicitly simulated using micromechanical models [19–21]. An alternative and re-

cently proposed technique is to link micromechanical models with elastoplasticity using a

multiscale framework [18]. The main idea is to replace phenomenological evolution laws

with direct extraction of physically meaningful PIVs from the micromechanics. The resulting

micromechanically-based evolution of PIVs is nonsmooth and falls within the realm of C0

evolution laws tackled in this work.

Among the few previous efforts to address nonsmooth elastoplasticity problems, the nons-

mooth Newton method [22] is responsible for laying down an important theoretical foundation

for integrating nonsmooth plasticity relations. However, as pointed out in [22], the derivation

of the method relies on the assumption of J2-plasticity and, hence, the applicability of this

method to other type of plasticity models (e.g., pressure-dependent models) remains to be

determined. There have been other semi-implicit algorithms proposed in the literature (see

[23; 24] for example), but these have been aimed at explicitly integrating the hardening or

evolution law and the flow rule, while the rest of the algorithm is fully implicit.

In this work, a simple semi-implicit algorithm is proposed to effectively combine the

strengths of implicit and explicit architectures. Implicit integration algorithms easily lose

their advantages when integrating nonsmooth relations. At the same time, though explicit

algorithms have the ability of accommodating nonsmoothness, they may suffer shortcomings

such as drifting and small critical time steps [24; 25]. Further, combining explicit stress

integrators with implicit FE schemes may be problematic [26]. We unveil a semi-implicit

algorithm that conserves all the features of the implicit schemes except for integration of

the plastic internal variables. Specifically, the method ‘freezes’ the plastic internal variables
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(PIVs) incrementally. Hence, the method resembles implicit perfect plasticity integrators at

the local level and therefore inherits unconditional stability. The PIVs are then updated a

posteriori at every time increment. The combination of local freezing and the a posteriori

update of PIVs affords the method the ability to handle nonsmooth (C0) evolution laws. It

is also shown that incremental updating is efficient computationally and its application to

recent multiscale techniques will be clearly demonstrated. The robustness and accuracy of

the proposed algorithm is investigated using several numerical examples.

This paper is organized as follows. Section 2 summarizes the rate elastoplasticity for-

mulation and presents the classic implicit return mapping scheme. In Section 3, the pro-

posed semi-implicit algorithm is presented based on the implicit return mapping algorithm.

Section 4 presents a detailed verification of the semi-implicit algorithm where we focus on

boundary value problems to assess accuracy and robustness (convergence) of the algorithm

against the backdrop of the fully implicit return mapping integrator. We conclude that the

incrementally updated semi-implicit algorithm furnishes an appropriate balance between ac-

curacy and robustness and, as a result, we utilize this method to perform proof-of-concept

micromechanically-based semi-concurrent multiscale computations in Section 5. We summa-

rize our findings and make some closing remarks in the last section.

As for notations and symbols used in this paper, bold-faced letters denote tensors or

vectors; the symbol ‘·’ denotes an inner product of two vectors (e.g. a · b = aibi), or a single

contraction of adjacent indices of two tensors (e.g. c · d = cijdjk); the symbol ‘⊗’ denotes a

tensorial (or dyadic) product (e.g. a⊗ b = aibj, or α⊗β = αijβkl); the symbol ‘:’ denotes an

inner product of two second-order tensors (e.g. c : d = cijdij); the symbol ‘|| · ||’ denotes an

L2 norm of a vector, e.g., ||e|| = (e ·e)1/2 or a tensor ‖A‖ = (A : A)1/2. Stress and strain are

expressed in Voigt notation, and as a result, the associated stiffness/compliance are expressed

as matrices.

2 Infinitesimal elastoplasticity and implicit integrators

The most salient ingredients of the infinitesimal elastoplasticity theory are [27]:
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• Additive decomposition of strain rate into elastic and plastic components, i.e., ǫ̇ =

ǫ̇e + ǫ̇p.

• Generalized Hooke’s law, i.e., σ̇ = ce : ǫ̇e, where ce is the elastic constitutive tensor.

• Elastic domain and yield condition such that the yield surface F = 0 defines the limit

of the elastic domain.

• Non-associative plastic flow rule, i.e., ǫ̇p = λ̇g, where λ̇ ≥ 0 is the consistency parameter

or plastic multiplier and g := ∂G/∂σ is the direction of the plastic flow, where G is the

plastic potential function.

• Evolution laws for the PIVs involved in F and G. In this paper, we use a vector α

to represent the set of PIVs. In classical infinitesimal elastoplasticity, the evolution

relations for the PIVs are typically cast in rate-form, α̇ = λ̇α̂(σ,α).

• The Kuhn-Tucker optimality condition, λ̇F = 0, which induces the consistency require-

ment λ̇Ḟ = 0.

The aforementioned ingredients are the foundation for most plasticity models available,

which are typically integrated numerically into a finite element (FE) or finite difference code.

Numerical integration of these models is crucial for successful modeling of boundary value

problems in engineering. A well-established integration technique is the implicit return map-

ping algorithm. A schematic showing the role of the implicit return mapping in the material

subroutine inside a FE code is shown in Figure 1. As shown in this flowchart, the material

subroutine is at the heart of the FE code and its main purpose is to compute, given an incre-

ment in the strain ∆ǫ, the resulting incremental change in state, i.e., ∆σ and ∆α. Here we

use the incremental notation ∆� := �n+1 − �n, where �n+1 corresponds to the value of the

function evaluated at time station tn+1. In addition, the material subroutine computes the

consistent tangent algorithm defined as c = ∂σn+1/∂ǫn+1. The consistent tangent is avail-

able in closed-form when implicit integrators are invoked and this is one of the reasons that

make implicit algorithms appealing. Consistent tangent operators afford implicit nonlinear

FE codes asymptotic rates of convergence, a key feature for efficient engineering analyses.
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Material Subroutine

  given

  compute simutaneously

TIME STEP LOOP

ITERATION LOOP

ELEMENT LOOP

GAUSS INTEGRATION LOOP

CONTINUE

CONVERGENCE CHECK
YN

λn, αn, σn & ∆ǫ

λn+1, αn+1, σn+1 & cn+1

Figure 1: Flowchart for an implicit return mapping algorithm within an FE code.

Implicit return mappings rely heavily on Newton-Raphson schemes to iteratively arrive at

a solution [12; 28; 29]. These schemes typically construct residual vectors r as a function of

the unknowns x, i.e.,

r (x) =







ce−1 : ∆σ + ∆λG,σ − ∆ǫ

∆α − ∆λα̂(σ,α)

F (σ,α)







; x =







σ

α

∆λ







(2.1)

where ce is the linear elastic stiffness matrix and ∆λ is the discrete consistency parameter.

Solution to the local system of generally nonlinear equations is achieved when r (x) = 0 and

the rate of convergence is intimately dependent on the consistent local tangent (Jacobian)

such that

r,x =









ce−1 + ∆λG,σσ ∆λG,σα G,σ

−∆λα̂,σ δ − ∆λα̂,α −α̂

F,σ F,α 0









(2.2)

where δ is the second-order identity tensor. The above Jacobian underscores the potential

issues related to accommodating nonsmooth evolution laws for α. If these functions are

only C0, the required derivatives appearing in the local Jacobian may not be continuous or

may not even be defined. By way of example, we will show that this lack of continuity in
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the derivatives of the evolution laws could be detrimental in the convergence of the local

integration algorithm and, as a result, that of the global computation. The next section

describes a plausible alternative to fully implicit algorithms where the Jacobian matrix does

not require evaluation of the derivatives of the evolution laws, making it possible to handle

C0 evolution functions.

Remark 1. If the formulation is isotropic, the yield surface F and plastic potential G can

be expressed as a function of the stress invariants and the spectral decomposition can be

exploited. These algorithms are efficient since they reduce the number of unknowns from

full stress space to principal stress space. The interested reader is referred to [29] for an

elaboration of these types of algorithms.

3 The semi-implicit return mapping algorithm

The implicit algorithm introduced in the foregoing section is a classic approach to integrate

plasticity models. Under optimal conditions, this algorithm is able to achieve asymptotic

quadratic convergence rates, first order accuracy, while featuring unconditional stability. How-

ever, in the presence of nonsmoothness, the implicit approach may not be suitable. As shown

in equation (2.2), the local Jacobian, and hence the convergence of the algorithm, depend

crucially on the computability of the necessary gradients. In the case of C0 evolution laws,

it is clear that convergence rates could be severely affected and the algorithm may diverge

altogether. It is well known that the Newton-Rapson scheme will have serious issues con-

verging near inflection points. Hence, it is often difficult, sometimes almost impossible, to

use the conventional implicit method to integrate plasticity models with nonsmooth evolution

relations (e.g., emanating from complex micromechanical substructures) [25; 30].

To ameliorate the shortcomings of fully implicit schemes in the context of C0 evolution

laws, we propose a simple semi-implicit scheme. The main procedure is simple and it involves

freezing the plastic internal variables (PIVs) in the model at their previous, converged value.

If the solution at time station tn+1 is being pursued, the PIVs in the model are fixed at their

value at time station tn, or αn. This strategy of freezing the PIVs is different from previous
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semi-implicit algorithms such as those presented in [23; 24], where the plastic flow and moduli

are explicitly integrated.

A flowchart explicating the semi-implicit return mapping algorithm is given in Figure 2.

Comparing the new semi-implicit scheme in Figure 2 with the fully implicit algorithm in

Figure 1, it is clear that the material subroutine only updates the stresses σ and the plastic

increment ∆λ at tn+1, while keeping the PIVs fixed at their previous tn value. Accordingly,

the unknown vector x and the corresponding residual r read

x =







σ

∆λ







, r(x) =







(ce)−1 · ∆σ + ∆λG,σ − ∆ǫ

F (σ)







(3.1)

Note the reduction in the number of unknowns and the resulting disappearance of the deriva-

tives of the PIVs, cf., equation (2.2). In general, it is still necessary to invoke the Newton-

Raphson locally to solve for x. Hence, the local Jacobian is defined such that

r,x =






a g

f 0




 ; a := (ce)−1 + ∆λΛ; Λ := G,σσ; g := G,σ; f := F,σ (3.2)

The consistent tangent operator c = ∂σn+1/∂ǫn+1 is obtained in the standard form, similar

to the fully implicit algorithms, by exploiting the converged residual function [12; 31; 32], i.e.,

c = a−1 −
1

χ̄
a−1 : g ⊗ f : a−1; χ̄ = g : a−1 : f (3.3)

where one can show that c corresponds to the upper fourth-order tensor of the inverse of the

local jacobian r,x. It is interesting to note the similarity between the consistent tangent and

the continuum elastoplastic tangent for perfect plasticity, i.e.,

cep = ce −
1

χ
ce : g ⊗ f : ce; χ = g : ce : f (3.4)

For the case of a two-invariant model, such as Drucker-Prager, the above return mapping
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converges in one iteration and the state is obtained directly such that,

σ = σtr − ∆λg; σtr = σn + ce : ∆ǫ (3.5)

and

∆λ =
F tr

χ
; F tr = F (σtr) (3.6)

These equations of state for the stress σ and the plastic multiplier ∆λ are obtained departing

from a trial state i.e., σ = σtr and ∆λ = 0. The isotropy of the linear elastic model and

the yield and plastic potential functions imply coaxiality, which leads to f = f tr and g = gtr

in the Drucker-Prager model, where the trial gradients are simply the gradients of the yield

function and plastic potential evaluated at the trial stress σtr. A geometrical interpretation

for the algorithm in stress space is given in Figure 3. From this figure and from equations

(3.5) and (3.6), it can be appreciated that the converged state is only a function of the trial

state and therefore can be obtained without iterations. Finally, based on equation (3.5) a

simplified closed-form expression for the consistent tangent operator is obtained, i.e.,

c = cep
︸︷︷︸

continuum tangent

− ∆λce : Λ : ce
︸ ︷︷ ︸

algorithmic tangent

(3.7)

where one can observe the O(∆λ) contribution from the algorithmic tangent.

Remark 2. The plastic internal variables (PIVs) are not updated until the global equation

of motion have been satisfied at the global level. Figure 2 shows the updating procedure.

In essence, the PIVs are direct functions of the converged values of stress σ and the plastic

multiplier ∆λ. These PIVs are used for the next time step calculation and kept frozen until

the subsequent converged state is achieved.

To bypass potential problems with nonsmooth evolution (C0) functions, the semi-explicit

algorithm presented above, freezes the plastic internal variables at the previous time station,

effectively behaving as a perfectly plastic material for a given time step. Similarly, truly

explicit algorithms [e.g. 33; 34] will also be able to bypass issues related to C0 functions for
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Material Subroutine

  given

  freeze

  compute λn+1, σn+1 & cn+1

Updates

TIME STEP LOOP

ITERATION LOOP

ELEMENT LOOP

GAUSS INTEGRATION LOOP

CONTINUE

CONVERGENCE CHECK

Y

N

λn, αn, σn & ∆ǫ

αn

∆α = ∆λα̂(σn+1,αn)
αn+1 = αn + ∆α

Figure 2: Flowchart for the semi-implicit return mapping algorithm within an FE code.

the evolution laws. However, the explicit algorithms have two potential shortcomings. First,

explicit algorithms generally need to be corrected to prevent yield surface from ‘drifting’, i.e.,

a violation of the consistency condition [24; 25]. Furthermore, explicit stress integration is

better employed within an explicit FE framework [e.g. 26], as there is no closed-form solution

for the consistent tangent operator. In fact, it has been shown that the derivation of such a

CTO can be quite tedious [35] and could necessitate numerical differentiation [30; 36], which is

computationally expensive. In contrast, the semi-implicit algorithm presented above combines

the advantages of implicit and explicit methods.

Remark 3. It can be seen that the main shortcoming of the semi-implicit method will be

potential lack of accuracy stemming from the frozen plasticity. However, as Figures 2 and 3

show, the stress is corrected to enforce consistency, i.e., Fn+1 = F (σn+1,αn) = 0, where the

PIVs are frozen at their values at tn. This inaccuracy should not be confused with drifting,

which is typically defined as Fn+1 6= 0 in explicit schemes (see [24] page 277).
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PREDICTOR

CORRECTOR

PLASTIC

σn

σn+1

Fn+1

Gn+1Fn

ELASTIC

PREDICTOR

! "

INTER-STEP

EVOLUTION

INTER-STEP

EVOLUTION

Figure 3: Two scenarios for the semi-implicit algorithm: (a) hardening and (b) softening.

4 Verification: application to cohesive-frictional plasticity

In this section, and without loss of generality, we apply the semi-implicit return mapping to

a Mohr-Coulomb-type model exemplified by the classic linear elastic-plastic Drucker-Prager

model with nonlinear hardening/softening [37]. Naturally, we will demonstrate the robustness

of the method within the context of C0 evolution laws for the plastic internal variables involved.

The elastic region of the model is furnished by the linear tangent such that

ce = Kδ ⊗ δ + 2µ

(

I −
1

3
δ ⊗ δ

)

(4.1)

where K and µ are the constant elastic bulk and shear moduli, δ is the second-order identity

tensor, and I is its fourth-order counterpart. Within this context, we can define two invariants

of the stress tensor such that

p =
1

3
tr σ; q =

√

3

2
‖s‖ (4.2)

where tr � = � : δ is the trace operator, and s = σ − pδ is the deviatoric component of the

stress tensor. Similarly, the invariants of the strain rate tensor (total, elastic, or plastic) are

defined as

ǫ̇v = tr ǫ̇; ǫ̇s =

√

2

3
‖ė‖ (4.3)

where ė = ǫ̇ − 1/3 ǫ̇vδ is the deviatoric component of the strain tensor.

Using the aforementioned invariants of the stress tensor, we can define the yield surface
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and plastic potential for the Drucker-Prager (D-P) model:

F = q + αp − cf

G = q + βp − cq

(4.4)

Typically, the cohesion parameter cf = 0 for granular materials, while the cohesion-like pa-

rameter cq is to be adjusted so that the potential surface G is always attached to the current

stress point. Two evolution parameters are involved in the D-P model—the friction resis-

tance α and the dilatancy parameter β. For cf = 0 (assumed henceforth) and at yielding, the

friction parameter takes the form

α = −
q

p
(4.5)

Note that the only allowable states of stress when cf = 0 are compressive, i.e., p < 0. The

physical interpretation for the plastic internal variable α is that it directly represents the

mobilized friction angle of the granular material. Hence, α indicates the mobilized friction

resistance at any given state.

Invoking the nonassociative flow rule, one can show that the volumetric and deviatoric

invariants of the plastic strain rate tensor are defined by

ǫ̇p
v = λ̇

∂G

∂p
; ǫ̇p

s = λ̇
∂G

∂q
(4.6)

For the D-P model presented here, it turns out that the dilatancy β takes the form

β =
ǫ̇p
v

ǫ̇p
s

(4.7)

Similar to the friction coefficient α, the dilatancy β measures the change in volumetric plastic

deformations for a given change in deviatoric plastic deformations. Reynolds in 1885 coined

the term and pointed out its crucial role in the mechanical behavior of granular media [38].

Finally, the corresponding gradients to the yield surface and plastic potential are given such
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that

f =
1

3
αδ +

√

3

2
n̂

g =
1

3
βδ +

√

3

2
n̂ (4.8)

where n̂ = s/‖s‖ is the unit deviatoric tensor. Due to coaxiality, it can be shown that the

deviatoric unit tensor can be defined using the trial stress tensor, i.e., n̂ = str/‖str‖ and,

consequently, f = f tr and g = gtr.

In what follows, different evolution laws for the PIVs α and β will be considered to

evaluate the accuracy, stability, and efficiency of the proposed semi-implicit algorithm against

the backdrop of its fully implicit counterpart.

4.1 Smooth evolution law

The accuracy, stability, and efficiency of the semi-implicit integration technique will be eval-

uated in this section. A smooth evolution law will be considered to provide both the semi-

implicit and fully-implicit algorithms the same datum to make meaningful comparisons.

Consider the following smooth evolution laws for the friction and dilatancy parameters,

respectively

α = a0 + a1λ exp (a2p − a3λ)

β = α − β0 (4.9)

where a0, a1, a2, a3 and β0 are (positive) material constants, and λ is the cumulative plastic

multiplier. It is clear that the evolution laws above are highly nonlinear and state-dependent.

Note that the friction resistance α and the dilatancy parameter β differ by a constant β0, which

is amenable to the stress-dilatancy relation widely observed in granular media [18; 39; 40].

The evolution laws defined above were introduced in [29] to test the robustness of fully-implicit

return mapping algorithms. Similar to the values used in [29], which apply to soils, we use

a0 = 0.7, a1 = 50, a2 = 0.0005/kPa, a3 = 50 and β0 = 0.7. For the elastic parameters, we use
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Figure 4: Integration of the smooth evolution relation under plane-strain compression: (a)
stress response and (b) strain response.

E = 25000 kPa and ν = 0.3.

Here, we will perform plane strain compression ‘experiments’ under constant confinement.

These experiments will furnish homogeneous BVPs that can be used to assess accuracy, sta-

bility and rate of convergence at the global level. The specimens are initially isotropically

consolidated to a hydrostatic state of p0 = 50 kPa. Subsequently, the specimens are sheared

under constant lateral confining stress σ∗

3 but increasing axial strain ǫ1. The axial strain

is increased by ∆ǫ1 = 0.3% until the cumulative strain reaches about 10%. This situation

allows us to define the global scalar residual function such that R(ǫ3) = σ∗

3 −σ3(ǫ3), where we

underscore the dependence of the residual function on the unknown lateral strain ǫ3. Hence,

the solution of the problem is R = 0 when we have found an appropriate ǫ3 such that the

calculated lateral stress σ3 equals the prescribed lateral stress σ∗

3 , for a given axial strain ǫ1.

The convergence criterion for the BVP is given such that

|R|/|R0| < 10−10 (4.10)

where R0 is the initial residual.

Figure 4 shows the results of the experiments for both numerical integration techniques. It

can be seen that both the stress-strain response and the volume-strain evolution are captured
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Figure 5: Residual degradation for plane strain problem with smooth evolution law.

very well by the semi-implicit algorithm. The peak stress is captured correctly with a slight

delay due to the PIVs lagging (freezing). Overall, we can conclude that the results for both

algorithms are comparable. Similarly, it is important to compare the rate of convergence

globally to get a sense for the efficiency of the method in implicit codes where the consistent

tangent operator is needed. Figure 5 shows the semi-log plot of the normalized residual

degradation curves in two typical load steps for each integration algorithm. One convergence

profile is reported pre-peak and the other post-peak. Clearly, the convergence rates of both

algorithms are asymptotically quadratic. Convergence profiles at all other time steps are also

asymptotically quadratic. As far as convergence is concerned, these results suggest that the

semi-implicit algorithm is capable of delivering the same advantage as its implicit counterpart.

Finally, to assess the accuracy of the scheme in a more quantitative fashion, isoerror

analysis was performed. This numeric tool is typically employed to quantify the percent

error of a solution compared to an ‘exact’ solution for one time step and under homogeneous

conditions [27–29]. Figure 6 shows an isoerror map generated using various combinations of

(∆ǫ1,∆ǫ3). The semi-implicit algorithm was used in all computations, starting from the same

“isoerror point” shown in Figure 4a (σ1 = −131.2 kPa, σ2 = −83.0 kPa, σ3 = −50.0 kPa).

Each computation of (∆ǫ1,∆ǫ3) was first prescribed in a single step, and the computed stress
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Figure 6: Isomaps for the semi-implicit algorithm relative to the ‘exact’ solution.

is denoted by σ. Then, we calculated the ‘exact’ stress σ∗ by subdividing the strain increment

of (∆ǫ1,∆ǫ3) until further refinement produces negligible changes in the resulting stress. The

relative error was calculated from the equation

ERR :=
||σ − σ∗||

||σ∗||
× 100% (4.11)

The step-size dependent error is represented by the isolines in Figure 6, where negative strain

increment is compressive. As expected, accuracy generally deteriorates as the strain incre-

ments increase. Nevertheless, increases of up to 0.1% in the strain increment, which is large,

yield errors below 2%, which is generally acceptable.

These results suggest an equivalence between the semi-implicit and implicit return map-

pings under smooth conditions. Generally, implicit methods claim greater stability, good

accuracy and quadratic convergence profiles. This example has shown that the semi-implicit

return mapping proposed can claim similar properties. In what follows, we will show a case

where the semi-implicit algorithm performs much better than its implicit counterpart.
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4.2 Nonsmooth (C0) evolution law

In this section, the robustness of the semi-implicit method in handling C0 evolution laws

will be demonstrated by way of a numerical example. As mentioned earlier, the complexity

of granular materials often requires the use of highly nonlinear and often empirical evolution

laws for the plastic internal variables. It is not uncommon for evolution laws to contain ranges

over which the evolutions are continuous but introduce kinks at the intersections. One such

evolution law was proposed by Lade to simulate the behavior of granular materials [5; 6].

Consider the following evolution for the frictional resistance and dilatancy, respectively [5; 6],

α =







β0 + h1λ if λ ≤ l

β0 + h1l + h2(λ − l) if λ > l
(4.12)

β = α − β0 (4.13)

Figure 7 shows the plot of the evolution law proposed for α, labeled as ‘imposed’ since this

function effectively imposes the allowable values for the stress ratio −q/p. From Figure 7

and equation (4.12), it can be observed that the evolution law for the friction parameter is

bilinear, with a potential change in slope from h1 to h2 at λ = l. Hence, if h1 6= h2, as it

is usually the case, the derivative function is discontinuous at λ = l. This discontinuity will

make it difficult for fully implicit return mapping to converge.

For this example, we have chosen the following material parameters: β0 = 0.7, h1 =

20, h2 = −20 and l = 0.09. We perform axisymmetric compression simulations using the

implicit return mapping and the semi-implicit algorithm within the context of the Drucker-

Prager model presented above. The numerical example is started from a state of hydrostatic

compression of p0 = 50 kPa and then the confining stress is held constant with an increasing

axial strain at a rate of ∆ǫ1 = 0.5% in compression. Similar to the previous example, the

axisymmetric compression simulation furnishes a BVP with mixed boundary conditions and a

global residual where the confining stress is prescribed and must be matched by the computed

lateral stress. Of course, the global convergence of the problem depends crucially on the local

performance of the integration algorithm.
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Figure 7: Integration of nonsmooth evolution law (a) friction evolution and (b) stress-strain
curve.

The results of the simulations are shown in Figure 7. Clearly, one measure of success, is for

the computed stress ratio −q/p to follow the ‘imposed’ evolution of α. Figure 7 shows that

the semi-implicit algorithm is capable of reproducing the imposed evolution of the friction

parameter α before and after the peak. On the other hand, the fully implicit algorithm runs

into trouble near the peak, losing convergence and producing spurious results. Part of the

problem is explained by the global convergence profiles reported in Figure 8. It can be seen

that both algorithms converge quadratically in the hardening regime. Near the peak, however,

the implicit algorithm loses its convergence and finally diverges. In contrast, the convergence

profile for the semi-implicit algorithm is undeterred even during the softening regime.

These results clearly show the ability of the semi-implicit method to efficiently handle C0

functions describing the evolution laws necessitated to perform computations using elasto-

plastic models. Nevertheless, in the next section, a new class of nonsmooth evolutions for the

PIVs will be introduced.

5 Application to multiscale plasticity

In an effort to capture the micromechanical effects governing the behavior of granular media,

macroscopic phenomenological models have been introduced. These models have had relative

success modeling the behavior of granular materials using plasticity theory and phenomeno-
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Figure 8: Convergence profile for nonsmooth evolution law at various time steps.

logical evolution laws (e.g., the nonsmooth evolution shown in the previous example [5; 6]).

However, it is now well accepted that these phenomenological laws break down outside of the

realm of the boundary conditions used to develop them. For example, it is not uncommon for

an evolution law to break down under plane strain if it was developed under axisymmetric

conditions. For this reason, micromechanical models such as the discrete element method

(DEM) [41] have been proposed. Unfortunately, micromechanical models such as DEM are

very computationally intensive and will not be able to tackle engineering scale problems for

the next 20 years [42]. Therefore, similar to Molecular Dynamics computations, these dis-

crete methods have introduced a bottleneck in engineering computations, ameliorated by the

advent of multiscale methods.

The key idea of multiscale methods is to retain high fidelity where necessary and use con-

tinuum (phenomenological) approximations elsewhere. In general, multiscale methods can be

classified as either hierarchical or concurrent [16]. Hierarchical methods use information from

the smaller scale as input to the relation for the larger scale. On the other hand, concurrent

methods apply models at different scales to different domains and run them simultaneously.

In an effort to capture the behavior of granular materials accurately while bypassing phe-
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Figure 9: Flowchart for the hierarchical multiscale scheme.

nomenological evolution laws, Andrade and Tu have proposed a semi-concurrent multiscale

method for updating Drucker-Prager-type models [18].

The basic idea behind the semi-concurrent multiscale method is to link the granular scale

and the continuum scale by extracting the evolution of the basic plastic variables α and β

directly from the grain scale computations. Figure 9 shows the basic recipe for the method.

Comparing Figures 9 and 2, one realizes that the algorithms are form-identical, with the only

difference being that the update in the multiscale model is performed directly at the grainscale

and then passed back to the continuum plasticity model. Hence, the semi-implicit algorithm

presented herein is at the heart of the multiscale computational procedure proposed in [18].

5.1 Unit cell computations and PIV evolution

In the semi-concurrent multiscale scheme, and as shown in Figure 9, the update of the PIVs

is performed at the so-called unit cell and then this continuum information is passed to the

plasticity model [e.g., 17]. The unit cell contains a certain physical volume of microstructure,

from which continuum quantities (the critical parameters) are computed. A closely related
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concept is the so-called representative volume element (RVE), defined as the smallest possible

region representative of the whole heterogeneous media, on average [43]. Unlike the RVE, the

unit cell may not necessarily represent the behavior of the entire domain. However, similar to

the RVE, the unit cell is a finite physical domain where a continuum description is applicable

(high frequency oscillations are not present in a given continuum quantity, e.g., dilantancy).

In a multiscale framework using FE, the unit cell can be selected to cover a representative area

around a Gauss point, resembling the local Quasi-Continuum strategy [14]. In Figure 10a, for

instance, the unit cell corresponds to the hatched area outlined by the so-called ghost nodes.

Alternatively, the whole finite element can be taken as a unit cell, or the unit cell can be

allowed to cover multiple elements, resembling the non-local Quasi-Continuum [14].

UNIT CELL

GAUSS POINT+

GHOST NODE

F.E. NODE

1 2

43

UNIT CELL

+

+

+

+

∆σ22

∆ǫ11

∆ǫ12

(a) (b)

Figure 10: Unit cell computation: (a) domain, (b) mixed boundary condition.

The unit cell contains a configuration of the microstructure, associated with a specific

Gauss point. The usefulness of the unit cell—furnishing the critical parameters necessitated

by the macroscopic plasticity model—is realized through probing the microstructure in the

current configuration. This probing imposes selected components from σ and ∆ǫ onto the

boundary of the unit cell domain. As shown in Figure 9, the unit cell is invoked at the end of

the current load step n + 1. After the probing is completed, the resulting configuration of the

microstructure is recorded, which will be used as the starting configuration, or the current

configuration, for the next unit cell computation. More details about the multiscale procedure

and the unit cell computation are given in [18] and are outside the scope of this paper.
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The basic PIVs in the D-P model are realized by invoking their physical significance, i.e.,

αmic = −
qmic

pmic

βmic =
∆ǫmic

v

∆ǫmic
s

(5.1)

where the superscript ‘mic’ signifies that the quantity is computed from the micromechanical

model as a means to distinguish it from its continuum counterpart. The micromechanical

variables are then passed as approximations to the continuum plastic internal variables, i.e.,

α ≈ αmic and β ≈ βmic. In the next section, explanation is given in terms of how to compute

the stress and strain in a micromechanical model.

5.2 A representative example

To demonstrate the effectiveness of the semi-implicit algorithm in incorporating nonsmooth

micromechanical response into the multiscale scheme, we present the results of an axisymmet-

ric compression computation on a granular assembly. We use DEM as the micromechanical

model. To extract the stress tensor, equilibrium conditions for a particulate system can be

invoked, yielding [21; 44],

σ̄ =
1

V

Nc∑

c=1

lc ⊗ dc (5.2)

where lc represents the contact force at contact point c, dc denotes the distance vector con-

necting the two neighboring particles, Nc is the total number of contacts in the particle

assembly and V denotes the volume of the assembly, i.e., the volume of the unit cell domain

associated with a specific Gauss point. To compute a homogenized strain tensor, the domain

of the DEM-based unit cell can be partitioned into a series of polygonal subdomains, with the

corners of each polygon being the centers of participating particles [45]. These polygons are

deformed as the particle centers move, and the methods for computing these deformations are

given in [46; 47]. Consequently, a homogenized strain tensor can be obtained by averaging

these polygon-based deformations over the entire domain of the unit cell.

At the continuum level, the sample domain is discretized using one 8-node isoparametric
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Figure 11: Initial configuration of the DEM-based unit cell.

‘brick’ element. A single unit cell is used to contain the cubic assembly of 1800 polydisperse

spherical particles, shown in Figure 11. Initially, the assembly was isotropically compressed

to p0 = 5500 kPa, with the initial configuration depicted in Figure 11. The mixed boundary

conditions of the unit cell include vertical strain control and horizontal stress control, consis-

tent with the boundary conditions imposed on the finite element. A vertical strain increment

∆ǫ1 = 0.4% was prescribed on the finite element. Putting the DEM model aside, the multi-

scale scheme involves only two parameters: E = 5 × 105 kPa and ν = 0.25. For comparison

purposes, a direct numerical simulation (DNS) was performed on the same DEM assembly,

with identical initial state and identical loading mode. The DNS results are regarded as

the ‘exact’ solution against which the accuracy and performance of the multiscale scheme is

evaluated.

Figure 12 shows the critical parameters (αmic and βmic) obtained from unit cell computa-

tion and the resulting friction resistance calculated using the multiscale method, i.e., −q/p.

Figure 12b reports the evolution of the micromechanically-based dilatancy βmic, which is later

passed onto the macroscopic plasticity model. It is clear that the micromechanical relations

for both parameters are nonsmooth, especially in the post-peak, finite deformation regime.

These nonsmooth evolutions of αmic and βmic are recast into the semi-implicit return mapping

algorithm presented herein as nonsmooth evolution laws for the plastic internal variables α
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Figure 12: nonsmooth evolution of the critical parameters: (a) friction resistance obtained
from unit cell vs. −q/p computed by capsule model and (b) dilatancy parameter obtained
from unit cell.

and β. However, these evolutions of the PIVs are not empirical and are rather extracted

on-the-fly from the actual microstructure. As shown in Figure 12a, the semi-implicit return

mapping is able to reproduce the nonsmooth evolution of the frictional resistance parameter

effectively and accurately.

Remark 4. In this paper, we use infinitesimal elastoplasticity as an example to demonstrate

the effectiveness of the proposed algorithm. Extension to finite deformation plasticity is

straightforward and will not incur any substantial change in the algorithm. This has been

done before in the context of implicit return mapping algorithms (see [32; 48]). We recognize

the inaccuracy of the small deformation theory in representing the large deformations shown

in the previous examples. However, these examples are not shown to capture the physics of

deformation per se but to demonstrate the effectiveness of the semi-implicit return mapping

algorithm.

Figure 13 shows results obtained from the multiscale computation compared with those

from the DNS. The accuracy of the multiscale method is measured here solely based on how

closely it can reproduce the DNS results (verification). It can be seen that both the stress-

strain response and the volumetric deformations are captured accurately by the multiscale

24



0 10 20 30 40
0

2000

4000

6000

8000

10000

12000

14000

Vertical strain, %

q,
 k

P
a

 

 

DNS

Multiscale

0 10 20 30 40
−10

0

10

20

30

40

Vertical strain, %

V
ol

um
et

ric
 s

tr
ai

n,
 %

ba

Figure 13: Comparison of multiscale and DNS results: (a) stress response and (b) strain
response.

model. This is remarkable in many levels, but most importantly due to the few parameters

necessitated for the multiscale computation. The two elastic parameters are calibrated based

on the initial response from the DNS and held constant for the duration of the simulation.

Subsequently, the only parameters necessitated by the model are the frictional resistance and

the dilatancy, which are allowed to evolve and are directly extracted from the micromechanics.

It is remarkable that such a simple model can capture the material response so closely. Finally,

Figure 14 shows the global convergence rates for several different strain levels, highlighting

the optimal convergence rate displayed by the algorithm. These results are very promising as

they may open the door to more physics-based constitutive models to capture the mechanical

behavior of granular media, without resorting to phenomenological evolution laws.

Remark 5. There is a noticeable shift in the responses obtained from the multiscale compu-

tation relative to the DNS. This finite gap occurs at the transition from pure elasticity to

elastoplasticity and can be reduced by decreasing the time step. The shift is due to the semi-

implicit return mapping freezing of the plastic internal variables involved in the multiscale

computation.

Remark 6. The unit cell, representing the granular assembly, requires a number of parameters
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to describe the micromechanical response accurately. For the DEM model, these parameters

include particle geometry, grain stiffness, intergranular friction, etc. These parameters sub-

stantially determine how accurately the micromechanical model captures the true material

behavior, which, however, is not the main focus of this paper. The goal of the multiscale

scheme is to faithfully reproduce the response of the underlying micromechanical model at

the continuum scheme (whatever that micromechanical model is). Hence, the multiscale

method provides a bridge from the micro scale to the macroscale but it does not provide a mi-

cromechanical model. However, it is our belief that this multiscale technique will allow further

development of accurate and physics-based micromechanical models in the near future.

Remark 7. There are two key items related to the success of the multiscale technique. The

first one is the appropriate selection of the so-called critical parameters—those parameters

that are passed back to the macroscopic model. How to select these parameters is key.

In the case of granular materials under slow flow (quasi-static deformation) it appears as

though the frictional resistance and the dilatancy are sufficient to describe the bulk of the

material response. Hence, many models that encapsulate these mechanisms can be used in

the multiscale framework. This has been demonstrated elsewhere [18]. The second crucial

item is the appropriate selection of the size of the unit cell. In this work, we have not invoked

any theoretical basis for the selection of the size, but rather have based our determination on

the concept of the unit cell (and RVE for that matter), that it is the minimum size element
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where high oscillations in continuum properties can be filtered out.

6 Closure

We have presented a semi-implicit return mapping algorithm for integration of the stress

response in elastoplastic models with nonsmooth (C0) evolution laws. The algorithm owes

its versatility to the notion of freezing the plastic internal variables and a posteriori update

of the PIVs. We have demonstrated that the semi-implicit algorithm displays some crucial

qualities including good accuracy, stability, and the ability to calculate consistent tangent

operators in closed-form, which result in global quadratic convergence. The simple algorithm

was verified by way of numerical examples using empirically-based C0 evolution laws as well

as micromechanically-based evolutions of the critical variables. In both instances, it was

demonstrated that the semi-implicit algorithm can handle nonsmooth evolutions accurately

and efficiently. These features make the method promising and computationally appealing.
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