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Abstract

The behavior of particulate media, such as sands, is encoded at the granular-scale and hence meth-

ods for up-scaling such behavior across relevant scales of interest—from granular-scale (∼1mm) to

field-scale (>1m)—are needed to attain a more accurate prediction of soil behavior. Multi-scale

analysis is especially important under extreme conditions such as strain localization, penetration

or liquefaction, where the classical constitutive description may no longer apply. In this paper,

internally-consistent probabilistic models for undrained shear strength and Young’s modulus are

developed at multiple scales, and incorporated into a simulation framework where refinement of

the material description to finer scales is pursued only as neccessary. This probabilistic simula-

tion approach is then coupled with the finite element method. Numerical examples are presented to

show how the performance of the geosystem is influenced by taking into account multi-scale random

fields.
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1 Introduction

It is well known that material inhomogeneities exist at different length-scales in geomechanical

problems. Two types of inhomogeneities can be identified: (1) inherent inhomogeneities, which are

those resulting from fluctuations in material properties such as permeability or strength; (2) induced

inhomogeneities, which are those imposed by a physical phenomenon (e.g., deformation) that alters

the characteristics of the medium. Figure 1 shows typical scales relevant to granular materials.

All the information pertaining to granular systems, including inhomogeneities, is encoded at the

granular scale and propagated or upscaled through all the way to the field scale.
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Figure 1: Multi-scale nature of granular materials. After [1].

Inherent inhomogeneities are commonly modeled through the use of random field theory and

the finite element method. The effect of inhomogeneities on mechanical behavior of engineering

problems have been studied by many researchers at a single scale. For instance, at the site scale,

Griffiths and Fenton [2], Griffiths et al. [3] and Popescu et al. [4] have simulated shallow foundation

resting on soils with spatially varying properties. It has been shown that inherent inhomogeneities

of soil strength can greatly modify the basic form of failure mechanism of the foundation. More

recently, Andrade et al. [1] have coupled advanced elastoplastic models with geostatistical tools

to simulate the mechanical behavior of anisotropic samples of sands and showed that meso-scale

inhomogeneities in the porosity trigger global instabilities that are responsible for a significant

reduction in the load-carrying capacity of the samples. They have also observed that the upscaling of

porosity fields delays the predicted onset of localization due to local averaging over mesh elements. In
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dealing with material inhomogeneities and their effects on geosystems across scales, the conventional

methods need to be extended. This paper will propose methods to characterize multi-scale random

fields and a framework to couple them with finite elements at multiple scales.

Parallel to the development of modeling material inhomogeneities utilizing random field theory

and the finite element method, multi-scale methods have become the subject of intensive research

during the past decade, especially for modeling heterogeneous materials. According to the taxonomy

introduced in [5], multi-scale methods can be classified into four types, i.e., hierarchical, concurrent

(strong coupling), semi-concurrent (weak coupling) and hybrid hierarchical-semiconcurrent. One

of the motivations for these methods is to bypass the prohibitive computational cost of modeling

macroscopic structures using more accurate micro-scale constitutive models. One such example is

the FE2 approach (e.g., [6; 7]) for modeling composite materials. In the FE2 method, macroscopic

constitutive equations at a material point are replaced by finite element simulations of periodic

microstructures. A strongly-coupled multi-scale method was proposed ([8–10]) for analyzing non-

linear inelastic behavior for heterogeneous structures, where the macroscopic constitutive law is

replaced by micro-scale finite element computation at element level rather than at the material

point. The above mentioned methods deal with material behavior that is generally described by

continuum constitutive laws at different scales. More recently, Andrade and Tu [11] and Tu et al.

[12] proposed a framework coupling discrete element method with the finite element method for

behavior prediction in granular media, where the phenomenological hardening laws at the macro-

scale are bypassed and the key material parameters are extracted from granular structures directly.

While our paper focuses on material behavior described by continuum constitutive models, it is

possible to extend it to couple with discrete models given the work done by Andrade and Tu [11]

and Tu et al. [12].

In multi-scale models, the micro-macro relation is a key component. Various algorithms have

been proposed in establishing micro-macro relations based on different assumptions dealing with

either weakly coupled (e.g., [13; 14]) or strongly coupled (e.g., [8], [15]) scales. In the weakly coupled

case, the micro- and macro-scales can be fully separated and a representative volume element (RVE)

or unit cell is typically used to represent the micro-structure. In the strongly coupled case, the

characteristic length of micro-scale is finitely smaller—rather than infinitely smaller—than that of

macro-scale. In this paper, we consider the case where different scales are strongly coupled and
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propose the use of a concurrent multi-scale scheme [5], where displacements from the macro-scale

are passed onto micro-scale as boundary conditions and the averaged stresses are passed back to

macro-scale. The assumptions here are that the strain and stress, at an arbitrary material point in

the macroscopic domain, are the volume average of the strain and stress fields over the microscopic

domain, respectively.

A corresponding consideration in multi-scale modeling is the description of the underlying ma-

terial properties at multiple scales. In this work, material properties (e.g., undrained shear strength

and Young’s modulus) are assumed to be random but varying spatially in a somewhat smooth

manner. Mathematically, this means that these properties can be quantified as random variables

at a particular location, and that the value of these variables at multiple locations can be described

by joint probability distributions characterized using random fields modeling. Spatial dependence

for the non-Gaussian fields is introduced by first transforming the variables of interest to have

marginal Gaussian distributions, and then introducting dependence among these transformed vari-

ables through linear correlation coefficients—a procedure commonly used in the field of Geostatistics

(e.g., [16]). Material properties at the coarse scale are defined by averaging values at the corre-

sponding fine-scale locations; using this assumption, means, variances and spatial correlations at

the coarse scale are then derived to be internally consistent with the fine scale. A second important

piece of multi-scale random fields is Monte Carlo simulation of realizations of the field at multiple

scales. Thus, an interative simulation procedure is adopted where simulated values are obtained

at individual locations conditional on all previous simulations. This procedure is beneficial here

because it allows one to first simulate the field at only the coarse scale, then add simulation points

at the fine scale probabilistically consistent with the previous coarse-scale realizations. Further,

these conditional fine-scale simulations need not be performed immediately after the coarse-scale

simulation, allowing one to start with a coarse-scale simulation, perform initial analysis on the sys-

tem (either mechanics analysis, or some other analysis of the soil properties), and then refine the

scale of that simulation without having to start over or generate a new simulation of the field. This

adaptive refinement is expected to have important practical advantages in some situations.

The paper is organized as follows. Section 2 provides a description of the random material

properties of interest at the fine scale, including probability distributions and spatial dependence.

The conditional simulation procedure described in the previous paragraph is also introduced. In
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Section 3, a multi-scale description of the random field is introduced, and the probablity distributions

and correlations at that scale are derived under the assumption that coarse scale values are averages

of correponsing fine scale values. Strategies for multi-scale simulation are then discussed, including

the feasibility of simulating entire fields at the coarse scale, and then refining that simulation by

adding conditional simulations at the fine scale as desired. In Section 4, a multi-scale framework

for coupling random fields and the finite element method is proposed. Two main ingredients of

the framework, e.g., element-splitting technique and concurrent information-passing scheme, are

discussed in detail. In Section 5, numerical examples are presented where finite element simulations

of a strip footing utilizing the proposed framework are carried out. The undrained shear strength

is treated as the random variable for bearing capacity analysis; the Young’s modulus is treated as

random for settlement analysis. Of particular interest is the impact of different degrees of fine scale

discretization on the overall performance of the geosystem.

2 Characterization of material properties

The adopted approach for parameter simulation relies on classical random field models and Monte-

Carlo methods modified to account for various scales of resolution throughout the sample. One of

the challenges of this work is maintaining the appropriate spatial variability across scales. Char-

acterization of both the distribution and spatial correlation of undrained shear strength, Su, and

Young’s modulus, E, at the finest considered scale—the meso-scale—are detailed in this section.

2.1 Distribution of the soil properties

Beta, gamma, and lognormal distributions are all commonly used in literature to model soil prop-

erties. While no sufficient data exists supporting one type over another, Popescu et al. [4] have

observed that the values of soil strength in shallow layers are positively skewed. Based on these

findings the lognormal distribution is used to describe each parameter, which can be represented

by the following probability density function (PDF)

fY (y) =
1

yσln Y

√
2π

exp

(
−1

2

[
ln y − µln Y

σln Y

]2
)

(2.1)
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Figure 2: (a) Probability density function for undrained shear strength, and (b) histogram of
simulated values of undrained shear strength.

where fY (y) is used to denote the PDF and the values of µln Y and σln Y are the mean and standard

deviation of the natual log of the parameter Y , and are chosen depending on the parameter to

be modeled. In this paper, the parameters (µ, σ) used for undrained shear strength and Young’s

modulus are (100, 50) kPa and (100, 50) MPa, respectively. Selection of these values is discussed

in section 5. Note that an upper-case Y is used to denote the random variable and a lower-case y

is used to describe a specific numerical value of that variable.

The random variable can also be described in the form of a cumulative distribution function

(CDF)

FY (y) = Φ
(

ln y − µln Y

σln Y

)
(2.2)

where FY (y) denotes the CDF of Y and Φ () denotes the CDF for the standard normal distribution.

A PDF from Equation (2.1) is plotted in Figure 2 alongside a histogram of simulated values. The

histogram has the same general shape, but some variation is expected due to the finite number of

realizations shown here.
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2.2 Normal-score mapping

Realizations of the random variable at each point within the sample are dependent upon the values

of the surrounding points (spatial relationships are considered in detail in the following section). For

variables having Gaussian distributions, this joint dependence is fully described by pairwise linear

correlation coefficients and the associated analytical equations are quite tractable. This is generally

not true for non-Gaussian distributions where the associated model is not fully defined by a linear

correlation coefficient, and thus a so-called normal-score mapping may be used to take advantage

of the desirable Gaussian properties. In the next section, when working with fields of dependent

variables, the computations will all be done using correlated Gaussian fields having a mean of zero

and variance of unity. Each value in those standard Gaussian fields will then be transformed to

have the target distribution of Equation (2.1) using the relationship

y = F−1
Y (Φ (z)) (2.3)

where F−1 is the inverse CDF of the target distribution given in Equation (2.2), Φ () again denotes

the CDF for the standard normal distribution, z represents a simulated value from the standard

Gaussian distribution, and y is the transformed value coming from the target distribution. Figure

2b was created by simulating standard Gaussian samples (z) and transforming them using Equation

(2.3), illustrating the validity of this transform. Note that in the particular application considered

here, because Y is lognormally distributed, the transformation of between Gaussian Z and lognormal

Y can be performed by simply taking logarithms and exponentials, but this formulation is provided

for generality.

It is assumed that the spatial dependence introduced using this Gaussian correlation model and

mapping technique is appropriate for describing the dependence of the variable being studied, and

practical experience with this approach suggests that it is often a reasonable approximation [16].

This is a widely used approach which has been adopted by the authors in past research [1] and is

easily expandable to other types of target distributions.

7



2.3 Spatial correlation

The probabilistic model of the previous section describes the distribution of a parameter value at

a single location. To consider multiple locations in a specimen where the values at each location

vary somewhat, spatial dependence must be taken into account. In this section, we will develop the

mathematical tools for characterizing that dependence and simulating realizations of these random

fields.

Spatial correlation is described here at the finest considered scale—the meso-scale—using a form

of covariance known as a semivariogram, γ(h), which is equal to half the variance of the difference

of two random variables separated by distance h

γ(h) =
1
2

Var [Z(u)− Z(u + h)] (2.4)

where Z(u) is the distribution of the Gaussian random variable at location u. The vector distance

h accounts for both separation distance and orientation and may be defined by a scalar measure. To

simplify the relationship between distance and semicovariance, we define a scalar distance measure

h =

√(
h1

a

)2

+
(

h2

b

)2

(2.5)

where h1 and h2 are the centroidal separation distances along the field’s major and minor axes,

respectively, corresponding to vector distance h, and a and b specify how quickly spatial dependence

decreases along those axes. When the ‘a/b’ ratio equals unity the sample is isotropic, meaning

correlation decreases with distance equally in all directions. Skewing this ratio will result in banding

of the sample.

The semivariogram is often used in geostatistics instead of covariance because it requires second-

order stationarity of only the increments and not the underlying process. Here the two may be used

interchangeably because both requirements are assumed to be satisfied, but semicovariance is used

for the simulations because we are building on previous work that uses this formulation [16].

To generate samples consistent with a given semicovariance structure, we must specify a function

that provides the semicovariance in Equation (2.4) for a given h. The samples below are generated
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according to the exponential semivariogram

γ (h) = 1− exp (−h) (2.6)

Correlation, ρ, at a distance h is determined directly from the value of the semivariogram

ρ (h) = 1− γ (h) (2.7)

Note that the above equations describe spatial dependence of the Gaussian distributed variables

(Z) rather than the transformed variables having the final target distribution (Y ). It is therefore

necessary to verify that the desired spatial dependence relationship is upheld after the transfor-

mation of Equation (2.3) is performed. Figure 3 compares the specified model to the empirically

calculated correlation of a simulated isotropic sample pre- and post-tranformation (the procedure

used to generate these data will be described in the following section). The slight difference between

the specified correlation and the empirical correlation of the Gaussian data is due to the finite sam-

ple size. The difference between empirical correlation for the transformed data and the Gaussian

data is due to the transformation. In this case the characteristics of the semivariogram are upheld

well through the transformation from the Gaussian distribution to the lognormal distribution.

2.4 Simulation

Given the specified correlation model from the previous section, we would now like to simulate sam-

ple data having that correlation structure. A sequential approach is taken here for the simulation

procedure consisting of simulating each value individually, conditional upon all previously simulated

values. This sequential approach will be particularly valuable if one desires to do adaptive refine-

ment at fine scales; because it is not necessary to specify a priori the locations requiring fine-scale

resolution, one can simply add additional fine scale data, conditional upon all previously simulated

data, as the need arises. An additional advantage of this approach is that it allows real data points

to be incorporated. No such measurements are included here, but may be used in future work

to “anchor” the simulated samples more closely to actual data. This would be accomplished by

beginning the simulation with the field data included as previously generated variables, as outlined
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Figure 3: Empirical and specified correlation versus distance for a given realization of undrained
shear strength.

below, so that all simulated points are conditional upon them.

The first step in the sequential simulation process is to generate a single realization of a standard

normal variable. All subsequent realizations are then conditional upon all previous realizations,

represented by the joint distribution

 Zn

Zp

 ∼ N


 0

0

 ,

 σ2
n Σnp

Σpn Σpp


 (2.8)

where ∼ N (µ,Σ) denotes that the vector of random variables has a joint normal distribution with

mean vector µ and covariance matrix Σ, Zn is the next realization to be simulated, and Zp is

a vector of all previously defined or simulated points. The mean vector and covariance matrix

have been partitioned to clarify several equations below. The subscripts n and p in the partitions

represent “next” (as in next point to be simulated) and “previous” (as in all previously simulated

points), respectively.

Individual terms inside the covariance matrix are defined by

COV [Zi, Zj ] = ρZi,Zj · σZi · σZj (2.9)
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where Zi and Zj refer to two locations within the random field at any scale with standard deviations

σZi and σZj , respectively, and ρZi,Zj is the correlation coefficient between them.

Given the above model, the conditional distribution of next realization to be simulated is given

by a univariate normal distribution with updated mean and variance

(Zn|Zp = z) ∼ N
(
Σnp ·Σ−1

pp · z, σ2 −Σnp · Σ−1
pp ·Σpn

)
(2.10)

Once simulated, Zn becomes a fixed data point in the vector Zp to be conditioned upon by all

subsequent realizations. This process is repeated until all values in the field have been simulated.

3 Multi-scale considerations

One of the challenges of this work is maintaining appropriate spatial variability across several scales.

This paper describes two scales of interest. The finer scale is denoted as scale 2, while the coarser

scale is denoted as scale 1, and is defined as the average of all fine-scale points within its area. This

relationship is visually represented in Figure 4 and is mathematically written

Z1,a =
1
n
Σn

i=1Z2,ai (3.1)

where the subscript a refers to the area in Figure 4 denoted as ’a.’ All variables in the previous

section were described at the fine scale. The effect of this relationship on moments of the random

variables and their spatial relationships is described below.

3.1 Moments and correlation for multiple scales

At only the fine scale, simulation of random fields is relatively straightforward. As discussed above,

individual values in the field follow the standard Gaussian distribution with zero mean (µZ2 = 0),

unit standard deviation (σZ2 = 1) and correlation coefficients specified by Equation (2.7). These

values are inserted into Equation (2.10) to perform sequential simulation of correlated fields.

Inclusion of a coarser scale requires more careful consideration. Means, standard deviations and

correlations are computed for coarse-scale z1 values using the fine-scale information along with the
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Figure 4: Graphical representation of material properties at 2 scales.

definition of Z1,a (Equation (3.1)). Taking the expectation of this definition yields the mean of Z1,a

µ1 = E [Z1,a] =
1
n

n∑
i=1

µ2,i = 0 (3.2)

Accordingly, if the variance of fine-scale z2 values is unity and the mean of coarse-scale z1 values

is zero as shown above, then the coarse-scale variance σZ1,a can be computed as the expectation of

Equation (3.1) squared (the variance is equal to the expectation of Z2
1,a in this case, since the mean

of Z1,a is zero)

σ2
1 = E

[
Z2

1,a

]
− 0 =

1
n2

n∑
i=1

n∑
j=1

ρz2iz2j · σz2i · σz2j (3.3)

Correlation must be defined between all considered scale combinations. Expanding the definition

of covariance and rearranging Equation (2.9) to solve for correlation gives

ρZi,Zj =
COV [Zi, Zj ]

σZiσZj

(3.4)

where Zi and Zj refer to two elements within the random field at any scale with means µZi and

µZj , and other terms as defined in Equation (2.9). Making the appropriate substitutions at each

scale and simplifying yields the definition of correlation between two Z1 elements (Equation (3.5a))
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or between a Z1 element and a Z2 element (Equation (3.5b))

ρZ1a,Z1b =
∑n

i=1

∑n
k=1 ρZ2ai,Z2bk∑n

i=1

∑n
j=1 ρZ2ai,Z2aj

(3.5a)

ρZ2,Z1a =
∑n

i=1 ρZ2,Z2aiσZ2ai√∑n
i=1

∑n
j=1 ρZ2ai,z2ajσZ2aiσZ2aj

(3.5b)

where subscripts a and b refer to two different local averages as shown in Figure 4, and where scale

2 correlation was defined earlier in Equation (2.7). These results are comparable to corresponding

results for Local Average Processes in Random Fields modeling [17], but differ slightly here in that

they are defined for averages of discrete values rather than a continuous process.

Figure 5 compares correlation versus the normalized scalar distance measure between all com-

binations of scales. Note how averaging of the fine scale points effectively increases correlation for

a given distance relative to the fine scale. This is due to how the variogram “weighs” the fine-scale

elements inside of each local average. Non-linear variation of correlation across the coarse scale

puts more emphasis on fine-scale elements in closer proximity, which slightly increases correlation

for a given centroidal distance. If correlation were to somehow vary linearly with distance, the

correlations would be identical at all scales. This is similar to what occurs with fractal geometrical

variations, although that type of correlation structure is not as easily incorporated into this spatial

correlation characterization.

Also note how the correlation between a fine-scale element and a local average is not unity

at a distance of zero, which is to be expected by the definition of inter-scale correlation given by

Equation (3.5b). In this figure, each element at the coarse scale is subdivided into 16 fine-scale

elements. If each element at the coarse scale was comprised of only a single fine-scale element, the

correlation between scales would be unity.

3.2 Normal-score mapping at the coarse scale

Figure 2 above verified that the target distribution is satisfactorily obtained through transformation

at the fine scale, but it must be also verified that the mapping is consistent across scales. The

challenge is that the variable Y1 at the coarse scale is defined as the average of the fine-scale y2

values within the coarse cell, but in the sections above, multi-scale averaging has been performed
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Figure 5: Correlation vs. distance at all scales.

on the Gaussian variables Z. When mapping back the averaged (coarse-scale) z1 values to coarse-

scale y1 values, we need to ensure that the distribution of Y is identical to what would be attained

without this normal-score mapping.

There are several possiblities for performing this mapping at the coarse scale. In the first case,

we do the transforming of the simulated z2 values at the fine scale to get fine-scale y2 values, and

then average those fine-scale y2 values to get a coarse-scale y1 value.

y1 =
1
n

n∑
i=1

F−1
Y2

(Φ (z2,i)) (3.6)

This transformation would be guaranteed to ensure the averaging properties of Y , but it is not

practically feasible as we will not simulate fine-scale y2 values at all locations (this would eliminate

the benefit of multi-scale simulation). Nonetheless, it is used here as a benchmark for comparison

of other methods.

In the second case, we perform the transformation directly on the coarse-scale z1 simulations,

using the CDF of Y1

y1 = F−1
Y1

(
Φ
(

z1

σZ1

))
(3.7)

In this mapping, we first re-normalize z1 by dividing by its variance (it has mean zero, and the
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average of Gaussian variables is Gaussian, so no other normalization is neccessary). We then

transform it using the standard Gaussian CDF and the CDF of Y1. Note that the CDF of Y1 is

not the same as the CDF of the fine-scale Y2. This transformation is also guaranteed to ensure

the averaging properties of Y , as we have explicitly used the desired marginal distribution of Y1 in

the transformation, but it requires the additional step of finding the marginal CDF of Y1. In most

cases this cannot be done analytically, but it is possible to estimate it through a relatively simple

simulation procedure.

When estimating Y1 for Equation (3.7), several alternatives are considered which vary in good-

ness of fit depending on the defined distribution of Y2 and the number of fine-scale y2 elements in

each coarse-scale y1 element. Realizations of Y2 are first simulated and averaged. From here it is

possible to compute the empirical CDF of Y1 (this will be called Equation (3.7) alternate 1), which

should generally be a good approximation if sufficient realizations are generated, but in order to

have the convenience of a functional form two more methods are examined. As more fine-scale y2

elements are included in the each y1 elements, it becomes more appropriate to approximate Y1 as

Gaussian with estimated parameters (Equation (3.7) alternate 2). With fewer fine-scale y2 elements

included in each y1 element—and when the distribution of Y2 is similar to Gaussian—it may instead

be appropriate to approximate Y1 by the same form as that of Y2, first taking care to update the

parameters to reflect the effect of Equation (3.1) (Equation (3.7) alternate 3).

As a third trasnformation case, we simply use the fine-scale tranformation but input coarse-scale

z1 values

y1
∼= F−1

Y2
(Φ (z1)) (3.8)

The z1 values have less than unit standard deviation (Equation (3.3)), so inputing them through this

transformation will result in coarse-scale y1 simulations where value in the tails of the distribution

are less likely. This is as desired, due to the averaging process. There is no guarantee, however,

that the y1 values will have the desired marginal distribution in this case. Note that due to the

central limit theorem, the marginal distribution of Y1 will tend toward Gaussian as more fine-scale

elements are included in the average. In particular, the quality of the approximate transformation of

Equation (3.8) depends upon the similarity of the fine-scale distribution to a Gaussian distribution.

This tendency may need to be accounted for by explicitly using the revised coarse-scale distribution
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in the mapping (Equation (3.7)). This is the simplest mapping of the above three cases, but the

lack of gauranteed match with the desired marginal distribution is a disadvantage.

Figure 6 depicts empirical CDF’s of coarse-scale elements obtained by three different methods.

As mentioned above, the transformation of Equation (3.6) is considered the benchmark, and it is

obvious that in this case it is most appropriate to approximate the marginal distribution of Y1 as

lognormal (mapping by Equation (3.7) alternate 3 using the the same form as Y2 with the mean

and standard deviation updated by Equations (3.2) and (3.3)).

An illustration of the case where it is not adequate to use the form of Y2 for Y1 is represented

in Figure 7. Here, the y2 values (for a hypothetical distribution of porosity) follow a truncated

exponential model. As soon as these fine-scale y2 elements are averaged to form a coarse-scale

y1 element, the extreme values of the distribution become much less likely. Thus, it is clearly

not appropriate to approximate the functional form of the coarse scale as that of the fine scale

(either by Equation (3.8) or Equation (3.7) alternate 3). Instead, Figure 7 suggests that the best

approximation of the true marginal CDF of Y1 is the empirical CDF obtained as described above.

Transformations performed directly on coarse-scale y1 elements would be achieved by interpolating

between the points derived for the empirical model. Note that the curves for Equations (3.6) and

(3.7) alternate 1 are identical here because the same empirical model is used to visually represent

each transformation. The purpose of including an additional example is to emphasize that in general

it is adviseable to evaluate all or most of these transformation options for the coarse scale: what

works well in one situation may not work at all for another.

3.3 Implementation

The methodology here is based on defining parameters at the finest scale of consideration. The sim-

ulation will initially generate a coarse-scale resolution of the sample, then an empirically determined

set of these are further refined to the fine scale. For refinement, the same conditional framework

described above is used with care taken to specify appropriate values of variance and correlation.

The fact that the simulation begins at the coarse scale and works toward higher resolution should

not result in a field any different than starting with a fine-scale field and subsequently averaging

those elements together.

In the context of multiple scales, the sequential simulation process described above has the
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benefit of adaptive refinement (as introduced in section 2). If deemed necessary at any point in time,

any element can be broken down into its fine scale components without consideration of sequence. A

powerful implication of this is that the number of scales need not be limited to two; while the above

definitions explicitly consider two scales, they are easily expanded to more. The finest scale is always

the scale at which the soil property’s CDF and spatial correlation are defined, and any number of

averaging scales can be defined relative to the fine scale using recursive applications of the equations

above for coarse-scale properties. If it is desired to specify soil properties at the coarse scale, then

the above multi-scale definitions and results of Figure 5 can be used to approximately invert for the

fine-scale properties that result in the desired coarse-scale properties. With this approach, it may

not even be necessary to specify in advance the number of scales to consider.

Even in the two-scale case presented here, computational expense can prove significant. As

the size of Zp increases, the computational demand of Equation (2.10) grows geometrically due to

the need to invert ever-larger matrices. It therefore becomes desirable to limit the size of Zp each

time Equation (2.10) is evaluated. To acheive this, one option is to determine a maximum distance

along each axis for which to consider previously generated realizations. Another is to limit the total

number of previously simulated realizations to consider correlations with (keeping only those with

the highest correlations). The latter approach is adopted for this research. The motivation for these

approaches is that distant soil values have little impact on the distribution of Zn, and that even

non-distant points are “sheilded” from having an effect if there are many closer values with stronger

correlations. These and other approaches are documented for single-scale conditional simulations

[16], and appear to be generally applicable to multi-scale simulations as well.

Figure 8 below shows that limiting the maximum number of previously generated elements with

which to correlate to 125 does not adversely affect the specified spatial relationship significantly

where correlation is significant. Correlation is indirectly upheld at distances greater than a radius

inside which the maximum number of elements will fit. Some variation from the specified correlation

is expected due to the finite sample size, but the discrepancy (relative to that in Figure 3) is

more obvious when the maximum number of elements included in the operations precludes direct

correlation. The threshold at which the additional discrepancy arises depends on the maximum

number of points allowed in Zp (with the discrepancy going to zero as an infinite number of points

are allowed), so this number of can be varied to optimize the tradeoff between gained efficiency and
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lost accuracy.

As the simulation begins to refine coarse-scale elements, numerical instabilities must also be

considered. As defined, the average value of all fine-scale z2 values within a z1 element must equal

the originally simulated z1 value. As a coarse-scale element is subdivided, the conditional variance

given by Equation (2.10) will tend to decrease. For the last realization of Z2 to be simulated, only

one value exists such that the average is preserved, so the conditional variance for that element

will theoretically be zero. In practice, however, it is likely that the exact value will be slightly

non-zero due to numerical approximations, so the simulation framework used for this research

automatically sets this value appropriately. Failure to set this value manually may result in a

negative (though extremely small) variance, which in turn results in an imaginary standard deviation

after the inversion of Equation (2.10), and therefore unrealistic realizations of Z2.
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4 Framework for coupling random fields and the finite element

method at multiple-scales

In this section, a multi-scale framework that couples random fields and the finite element method is

presented. The formulation of the framework is based on the assumption that the strain and stress

at an arbitrary material point in the coarse-scale domain are the volume average of the strain and

stress fields over the fine-scale domain. In this paper, we focus on problems with material behavior

being described by continuum constitutive theories. We utilize finite elements at both the macro-

and micro-scales. The kinematical constraints on the fine-scale domain are first discussed. Then,

the main ingredients used to construct the framework, i.e., the element-splitting technique and the

concurrent information-passing scheme are proposed.

4.1 Kinematical constraints on the fine-scale finite elements

Derivation of the kinematical constraints on fine-scale elements is based on the assumption that

strain at an arbitrary point at the coarse scale is the volume average of the strain fields over the

fine-scale domain. Here, we follow the discussion from [18]:

ε1 =
1

meas(Ω)

∫
Ω

ε2(x)dΩ (4.1a)

ε2 = ∇s u2 (4.1b)

where ε is the strain tensor, u is the displacement vector, subscripts “1” and “2” refer to macro-

(coarse) and micro- (fine) scale, respectively, “meas(Ω)” is the measure of Ω, which equals to the

volume (in 3D) or the area (in 2D) of the fine-scale domain and ∇s is the symmetric gradient oper-

ator. Only displacement fields that satisfy Equation (4.1) are said to be kinematically admissible.

Furthermore, the fine-scale displacement field, u2, can be split into the sum of a linear displacement,

ε1x2, where x is a position vector, and a displacement fluctuation, ũ2, i.e.,

u2 = ε1x2 + ũ2 (4.2)
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The corresponding fine-scale strain field is then written as,

ε2 = ε1 +∇s ũ2 (4.3)

Substitute Equation (4.3) into Equation (4.1a), we have the kinematical constraint on displacement

fluctuation,
1

meas(Ω)

∫
Ω
∇s ũ2dΩ = 0 (4.4)

Depending on the choice of displacement fluctuation field ũ2 that satisfies Equation (4.4), we can

further constrain the fine-scale displacement field. In this paper, we choose the case where the

kinematical constraint on the fine scale mesh is ũ2 = 0. Following Equation (4.2), we have:

u2 = ε1x2 (4.5)

For displacement fields that satisfy Equation (4.5), it can be shown that the Hill’s energy condition,

ε1 : σ1 = 1
meas(Ω)

∫
Ω ε2 : σ2dΩ is satisfied [19].

4.2 Element-splitting technique

In order to take into account material property fluctuations at higher resolution, the domain of

interest at coarse scale needs to be further discretized. In the finite element method, the domain of

interest is discretized by coarse-scale elements. Naturally, the first step is to split coarse-scale finite

elements where needed. Consider a typical coarse-scale quadrilateral element as shown in the upper

left corner of Figure 9. So-called “ghost nodes” are first generated using the interpolation function

as

xg = N · xFE node (4.6)

where xg is the position vector for ghost nodes, N is the interpolation function and xFE node is the

finite element (FE) nodal position vector.

The element is then subdivided into tributary areas based on the generated ghost points and the

existing FE nodes, e.g. shadow area in the coarse-scale element in Figure 9. Each of these tributary

areas defines a domain for the finer scale, which is then further discretized using a new FE mesh.
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Therefore, each Gauss point at the coarse scale can be linked to a fine-scale mesh through element

splitting. The information passing between these two scales will be described in the next section.

At this point, material properties at different levels of resolution will be needed and hence the

method described in Sections 2 and 3 is utilized. The levels of resolution at the finite element

and the random field are set to match each other at each scale. Moreover, each material point in

the random field is set to be at the centroid of a finite element so that each element has constant

material properties.

4.3 Concurrent information-passing scheme

Once the domain is discretized, a systematic way to access information at multiple scales is needed.

Here, we propose using a concurrent information-passing scheme where essentially displacements

from coarser scale are passed onto the finer scale as boundary conditions and the averaged stress is

passed back from the finer scale up to the coarser scale.

The first step of this scheme is to precondition the fine-scale mesh by a homogeneous state of

strain εn
1 and internal variables ξn

1 , which correspond to the converged state at previous time station

tn of the coarse-scale Gauss point, i.e.,

ε0
2 = εn

1 ; ξ0
2 = ξn

1 (4.7)

where the superscripts “0” refers to the initial sub-step at the fine scale computation and “n” refers

to the nth time step at coarse scale computation.

This precondition step is necessary for the fine-scale computation to start from the same state

as the corresponding Gauss point at the coarse scale. Following Equation (4.5), displacements ∆u

are imposed on the fine-scale FE mesh by :

∆u2 = ∆ε1 · x2 (4.8)

where ∆u2 is the applied displacement boundary condition on the fine scale, ∆ε1 is the strain

increment of the coarse-scale Gauss point and x2 is the position vector of the fine scale mesh.

Equation (4.8) means that the fine scale displacement field is constrained to follow the coarse
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scale displacement field at the boundary. The imposed displacements define a new boundary value

problem, where the domain is the tributary area of the coarse-scale element.

Then, the fine scale stress σ2(x) is computed from the constitutive equation with the prescribed

strain ε0
2 and the boundary condition ∆u2. Upon the completion of the fine-scale FE computation,

the coarse-scale stress is then obtained by the homogenization equation, i.e.,

σ1 =
1

meas(Ω)

∫
Ω

σ2(x) dΩ (4.9)

Since we employ finite elements at both scales, we rely on the Newton-Raphson iterative algorithm

to solve non-linear problems. A consistent tangent operator (CTO) is needed for nonlinear finite

element analyses. In general, the CTO is defined as:

c :=
∂σ

∂ε
(4.10)

where σ and ε are stress and strain tensors, respectively.

When we invoke the multi-scale computation for a particular coarse-scale element, to compute

the corresponding CTO for the coarse scale, we use Equation (4.9) and Equation (4.10), and take

into account the assumption that a homogeneous state of strain and strain increment are applied:

c1 : =
∂σ1

∂ε1

=
1

meas(Ω)

∫
Ω

∂σ2

∂ε2
:
∂ε2

ε1
dΩ

=
1

meas(Ω)

∫
Ω

c2 : IdΩ

=
1

meas(Ω)

∫
Ω

c2dΩ (4.11)

where I is the fouth-order identity matrix.

Finally, the averaged stress and CTO are passed back to the Gauss point at the coarse scale for

global stiffness and residual matrices assembly. Figure 9 summarizes the above-described multi-scale

framework.

23



GAUSS POINT+
GHOST NODE
F.E. NODE

PROBE w/
DISPLACEMENT 
B.C.'s

+

+

+

+

PRECONDITION 

e1

e2

ξ0
2 = ξn

1

HOMOGENIZATION

+

ε0
2 = εn

1

FINE SCALE RANDOM FIELD

∆u4

1 2

34

1 2

34

ELEMENT SPLITTING

∆u1

∆u3

∆u2

σ1, c1

Figure 9: The multi-scale framework for coupling the FE method and random fields.

The above-described scheme will allow one to systematically refine the domain of interest and

passing information from field scales all the way to specimen and meso-scales. The selective refining

strategy, on the other hand, would allow for a more efficient solution where details are only resolved

when necessary. The idea here is to zoom into zones where intense deformation is taking place.

Identifying those “key areas” is a non-trivial task and may require an error estimator and an

adaptive algorithm, which is beyond the focus of this paper. Here, we will loosely define such key

areas through the deterministic study. For the footing problem shown later, we know a priori to a

good extend where the intense deformation occurs.

5 Numerical simulations

In this section, we present numerical simulations of a typical footing problem utilizing random

fields and the finite element method at multiple scales. The geometry of the problem is 20 by

8 m, which is discretized by a coarse-scale finite element mesh. A rough rigid footing on cohesive

weightless soil is modeled with width of the footing (B) being 4m. A Drucker-Prager model [20] is

used to describe the elasto-perfectly-plastic behavior of the soil. The friction angle in the following
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simulations is set to be zero for simplicity. Soil properties needed in the mechanical model are:

Young’s modulus E, Poisson’s ratio ν and the undrained shear strength Su. Both the bearing

capacity and the settlement of the footing will be analyzed. For bearing capacity analysis, Su is

treated as the spatially correlated random variable with E and ν being constant; for settlement

analysis, E is treated as random with Su and ν being constant.

The objective of this footing problem is to utilize the above-described framework to study the

effect of random fields on the performance of the geosystem in a multi-scale context. In particular,

the influence of considering finer-scale random fields will be analyzed. In the following simulations,

three length parameters are of particular interest to the analysis, i.e., a, L1 and L2, where a is

the parameter related to spacial correlation (ref: Equation (2.5)) and larger value of a indicates

a more smoothly varying field; L1 is the size of a coarse-scale element, which is a constant in

this paper (L1 = 0.5 m); L2 is the size of a fine-scale element, which depends on the degree of

discretization. The degree of discretization (ds) indicates how quickly a coarse-scale cell will be

refined. For example, ds = 4 means a 1×1 cell at the coarse scale will be refined to 4×4 smaller

pieces at the fine scale.

5.1 Deterministic study

A deterministic study was first carried out using single scale finite elements (at the coarse scale)

to obtain the deterministic bearing capacity and settlement, and to identify possible “key areas”

that will be linked to fine-scale information. Material properties used here are: Young’s modulus

E = 100 MPa, Poisson’s ratio ν = 0.3, and the undrained shear strength Su = 100 kPa.

Typical load-displacement curves are shown in Figure 10. Here, failure is said to occur when

further loading no longer increases the bearing pressure (within a very small tolerance). It can be

seen from Figure 10 that as the mesh is refined, the bearing capacity will converge to the value

calculated by Prandtl’s solution, qf = NcSu = 514 kPa. Taking into account both accuracy and

efficiency, we choose a coarse-scale mesh of 40×16 elements, as shown in Figure 11, for all simulations

in the following sections. The deterministic bearing capacity for this mesh is qd = 556.27 kPa, which

is about 8% higher than that given by Prandtl. For rigid rough footing condition simulated here,

the footing nodes settle vertically by the same amount with no rotation. When loading pressure

on the footing equals 300 kPa, the deterministic settlement δdet equals to 0.012 m, which can be
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normalized by the width of the footing, i.e., δdet/B = 0.003. In simulations utilizing random fields,

the settlement at 300 kPa loading pressure will be obtained and compared with this deterministic

value.
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Figure 10: Load-displacement curves for a strip footing on homogeneous soil.
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Figure 11: The coarse-scale finite element mesh (40×16) and the area linked to the finer scale.

Figure 12 shows the deviatoric strain contour at failure. Intense deformation occurs at the

edge of the footing and failure surfaces are clearly formed. The “key area” is therefore chosen to

encompass the intense deformation zone and the failure surfaces, as shown in the dashed box in
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Figure 11. The geometry of this area is 12×4 m. Also shown in Figure 11 are different levels of

discretization.
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Figure 12: Deviatoric strain contour at failure for deterministic study.

5.2 Influence of multi-scale random fields on bearing capacity

In this section, the multi-scale random fields and the finite element method are incorporated to

simulate the footing problem. An initial coarse-scale random field for the undrained shear strength

is generated using 40×16 grids and hence matching the finite element resolution. Three coarse-scale

correlation length parameters (normalized), i.e., a/L1 = 0.5, 1.0 and 2.0 will be considered when

generating random fields. In the “key area”, the fine-scale resolution will be different depending

on the degree of discretization. Three particular cases with ds = 1, 4 and 8 are considered. The

coarse-scale finite element mesh will be split accordingly as shown in Figure 11 to match the random

field resolution.

Material parameters for generating lognormally distributed random fields are the mean µ = 100

kPa, which equals to the shear strength value used in the deterministic study, and the standard

deviation σ = 50 kPa, which gives the coefficient of variation (COV) a value of 0.5. Constant

material properties are Young’s modulus E = 100 MPa and Poisson’s ratio ν = 0.3.
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The initial random field simulation will first generate a coarse-scale resolution for the entire

domain. This field will be referred to as “coarse-scale random field”. Within the “key area”, the

framework described in Section 3 will be used to resolve the coarse-scale points down to finer pieces

according to specified degree of discretization. The generated random field after this refinement

process will be referred to as “multi-scale random field”. Through comparison of these two types

of random fields, we will show how considering finer scale information will influence the mechanical

behavior of the whole system.

Typical realizations of initial undrained shear strength fields for different degrees of discretization

are shown in Figure 13 for a/L1 = 2.0. Coarse-scale random fields are on the left column and

corresponding multi-scale random fields are on the right column. The degree of discretization

increases from top to bottom.
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Figure 13: Initial undrained shear strength fields for a/L1 = 2.0 with different degrees of discretiza-
tion: from top to bottom: ds=1, 4 and 8 respectively with the left column being coarse-scale random
fields and the right column being multi-scale random fields.

Though the same material parameters, i.e., µ and σ, are used for generating every random field

in this paper, they are defined at different length scales for different degrees of discretization. For

every realization, we can compute the mean and standard deviation of each generated random field

as well as the averages of those mean and standard deviation values, as shown in Figure 14 and
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Figure 15. Moreover, those averaged values can be used in approximating mean bearing capacities

[21].

The idea is to start from the simplified bearing capacity equation, where soil is assumed to be

weightless, then

qf = SuNc (5.1)

If we assume Prandtl’s solution for frictionless soil (as is the case in this paper) holds, then Nc is

constant (Nc = 5.14). Take natural logarithm of Equation (5.1),

lnqf = lnSu + lnNc (5.2)

The mean of lnqf is therefore

µlnqf
= µlnSu + µlnNc

= lnµSu −
1
2
ln(1 +

σ2
Su

µ2
Su

) + lnNc (5.3)

Then the mean of qf can be approximated as

µqf
= exp

{
lnNc + lnµSu −

1
2
ln(1 + σ2

Su
/µ2

Su
)
}

(5.4)

This approximated analytical mean value of bearing capacity will be plotted with the results ob-

tained by FEM computation as will be shown later.
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Figure 14: Mean for the generated initial undrained shear strength: (a) ds=1, (b) ds=4 and (c)

ds=8.
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Figure 15: Standard deviation for the generated initial undrained shear strength: (a) ds=1, (b)

ds=4 and (c) ds=8.

The load-displacement behavior obtained by random fields and deterministic analyses is shown

in Figure 16 for all simulations. It can be seen that bearing capacities of spatially varying soil are

significantly lower (18% on average) than the corresponding deterministic value.
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Figure 16: Load-displacement curves for all simulations.

Figure 17 shows how bearing capacities change with a/L1 for different degrees of discretization.

The first observation is that the mean bearing capacities computed by Equation (5.4) are in good

agreement with the FEM results especially for multi-scale cases, which shows Equation (5.4) can

be used as a rough estimation of mean bearing capacities. Also, it can be seen that (1) for coarse-

scale results with the same discretization level, the averaged bearing capacity increases slightly as

a/L1 decreases, this observation is consistent with the standard deviation curve shown in Figure

15, where smaller value of a/L1 gives a lower standard deviation and, therefore, a stronger field; (2)

for coarse-scale results with the same a/L1, the averaged bearing capacity increases with ds. This

is because the coarse-scale data point is seen as the average of the fine-scale points. The averaging

process effectively reduces the variability, especially for larger values of ds, which is shown in Figure

15 where the standard deviations for ds=4 and 8 are smaller than that of ds=1 for the same a/L1

values. While the mean values are roughly the same for all simulations, the reduced variability will

result in stronger fields that lead to higher bearing capacities.

Even more important observation in Figure 17 is the effect of using multi-scale random fields.

It can be seen that the mean of the bearing capacities obtained by multi-scale computation is

not influenced as much by either ds or a/L1. This is because the mean of the bearing capacities

are mainly affected by the mean and standard deviation of the undrained shear strength fields,

which as shown in Figures 14 and 15, are not significantly sensitive to either ds or a/L1. Further,
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with ds and a/L1 being the same, multi-scale bearing capacity results are, in general, smaller than

coarse-scale ones, especially for smaller values of a/L1. The reason is that, instead of using a local

average of the material properties, multi-scale computations zoom into the specific area to obtain

more detailed fine-scale information, which has roughly the same mean but higher variability than

their coarse-scale counterparts (as shown in Figure 14 and 15). Therefore, this results in weaker

zones that lead to lower bearing capacities. Also, the trend that the diffence between coarse-scale

and multi-scale bearing capacities decreases as a/L1 increases is consistent with the trend observed

in the standard deviation of generated data shown in Figure 15. The above observations confirm

that using averaged coarse-scale material properties tends to over-estimate the bearing capacity. In

other words, coarse-scale results are less conservative.
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Figure 17: Bearing capacities for different degrees of discretization: (a) ds=1, (b) ds=4 and (c)

ds=8.

Figure 17 shows how the bearing capacities are influenced by multi-scale random fields with

different levels of discretization. However, it does not provide information on how the failure
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surfaces are affected by considering the random field at multiple scales. Such insight is provided in

Figures 18, 19 and 20, which show the deviatoric strain contours for one particular realization for

a/L1 = 0.5 with ds=1, 4 and 8. Unsymmetrical failure surfaces can be clearly seen in these figures.

In the literature, e.g., [2–4], effects of single scale random fields on formation of failure surfaces

are studied. It has been shown that spatially varying soil properties trigger unsymmetrical failure

surface passing mainly through weaker soil zones. Figures 18, 19 and Figure 20 show clearly these

trends. More interestingly, these figures show that, in multi-scale random cases there are more local

fluctuations in the shear strains than in the coarse-scale cases, because higher levels of resolution

are taken into account. These detailed information may lead to effectively weaker spots resulting

in lower bearing capacities.

0 0 . 0 5 0 . 1 0 . 1 5 0 . 2 0 . 2 5
Figure 18: Comparison between coarse-scale and multi-scale random fields on failure surface for

a/L1 = 0.5 with ds=1: left column are initial shear strength fields and right column are shear

strain contours at failure; (a) and (b) correspond to coarse scale; (c) and (d) correspond to multi-

scale.
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Figure 19: Comparison between coarse-scale and multi-scale random fields on failure surface for

a/L1 = 0.5 with ds=4: left column are initial shear strength fields and right column are shear

strain contours at failure; (a) and (b) correspond to coarse scale; (c) and (d) correspond to multi-

scale.

0 0 . 0 5 0 . 1 0 . 1 5 0 . 2 0 . 2 5
Figure 20: Comparison between coarse-scale and multi-scale random fields on failure surface for

a/L1 = 0.5 with ds=8: left column are initial shear strength fields and right column are shear

strain contours at failure; (a) and (b) correspond to coarse scale; (c) and (d) correspond to multi-

scale.
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5.3 Influence of multi-scale random fields on settlement

In this section, the influence of multi-scale random fields on settlement is analyzed. For this purpose,

the Young’s modulus E is treated as the random variable while ν and Su are held constant. Material

parameters for generating lognormally distributed Young’s modulus fields are the mean µ = 100

MPa, which is equal to the values used in the deterministic study, and standard deviation σ = 50

MPa, which gives a COV value of 0.5. Three correlation length parameters (normalized) a/L1 =

0.5, 1.0 and 2.0 are used. The process for generating random fields, the definition of degree of

discretization and the notation for results are exactly the same as those used in bearing capacity

analysis. We look at the variations in settlement at a pressure level of 300 kPa.

Typical realizations of initial Young’s modulus fields for different degrees of discretization are

shown in Figure 21 for a/L1 = 2.0. Coarse-scale random fields are on the left column and corre-

sponding multi-scale random fields are on the right column. The degree of discretization increases

from top to bottom.
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Figure 21: Initial Young’s modulus fields for a/L1 = 2.0 with different degree of discretization: from
top to bottom: ds=1, 4 and 8 respectively with left column being coarse-scale random fields and
right column being multi-scale random fields.

Figure 22 shows settlements versus a/L1 for different degrees of discretization. The settlements
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are normalized by the width of the footing. Analogous to bearing capacity analysis, it can be seen

that (1) for coarse-scale results with the same discretization level, the averaged settlement increases

as a/L1 increases; (2) for coarse-scale results with the same a/L1, the averaged settlement decreases

with increasing ds; (3) for ds=1, there is no difference between coarse-scale and multi-scale results

as expected; (4) for ds=4 and 8 cases, higher levels of resolution are taken into account in multi-scale

computations and the results show that the multi-scale random fields yield larger settlements on

average for every value of a/L1, which confirms that coarse-scale results are less conservative.
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Figure 22: Settlements for different degrees of discretization: (a) ds=1, (b) ds=4 and (c) ds=8.

6 Conclusions

In this paper, we presented a novel method for characterizing multi-scale random fields. Cumulative

density functions and spatial correlation for two soil properties of interest (undrained shear strength

and Young’s modulus) were described at the finest considered scale. The relationship between this

scale and a coarser scale was defined and incorporated into a sequential simulation procedure.
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While two scales were presented here, including more by expanding the multi-scale definitions is

straightforward, and there is no need to specify a number of scales in advance. Simulations begin at

the coarse scale and work toward higher resolution, but the results are indiscernable from starting

at the fine scale and averaging those elements together. For convenience, a correlated standard

Gaussian field was initially generated and then transformed to the target distribution via normal-

score mapping.

We then proposed a framework for coupling the finite element method with random fields at

multiple scales. The formulation of the framework is based on the assumption that the strain and

stress at an arbitrary material point in the coarse-scale domain are the volume average of the strain

and stress fields over the fine scale domain, respectively. The framework consists of an element-

splitting technique and a concurrent information-passing scheme. A selective refining strategy was

used so that resolution is only increased where necessary.

A total of 720 simulations were performed. Among them, half utilized the proposed multi-

scale framework and the other half utilized coarse-scale random fields for comparison purposes.

Bearing capacity and settlement analyses were performed using the undrained shear strength and

the Young’s modulus as the random variable, respectively. It was shown that material property

fluctuations, in general, will result in lower bearing capacities, unsymmetrical failure surfaces and

larger settlements. More importantly, multi-scale results showed that higher levels of resolution

result in lower bearing capacities and larger settlements. Or in other words, coarse-scale results are

generally less conservative. These results show how the mechanics of the geosystem is influenced by

multi-scale random fields and the importance of accounting for material inhomogeneities at different

scales.
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[8] A. Ibrahimbegović and D. Markovič. Strong coupling methods in multi-phase and multi-scale

modeling of inelastic behavior of heterogeneous structures. Computer Methods in Applied

Mechanics and Engineering, 192:3089–3107, 2003.
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