# Finite element method: the basics

Prof. José E. Andrade Department of Civil & Environmental Engineering

July, 2007





# Outline

- Applications of FEM
- Fundamentals
- Examples

# Applications of FEM



# Biomechanics



Geomechanics



#### consolidation



# Solid-fluid interactions

# Simulation engineering



# Fundamentals of FEM

# FEM

- Designed to *approximately* solve PDE's
- PDE's model physical phenomena
- Three types of PDE's:
  - Parabolic: fluid flow
  - Hyperbolic: wave eqn
  - Elliptic: elastostatics



# FEM recipe Strong from Weak form Galerkin form Matrix form

## Elastostatics: strong



derived from continuum mechanics strong form = PDE + B.C.'s usually, there is no exact sln for strong form

### Elastostatics: weak

•Use principle of virtual work •Introduce virtual displacement  $w; \quad w(1) = 0$ •Use strong form

$$\int_0^1 w(u, xx + f) \, dx = 0$$

$$\int_0^1 w_{,x} \, u_{,x} \, dx = \int_0^1 w f \, dx + w(0)h$$

## Elastostatics: Galerkin

Construct approximate solution 
$$u^{h} = v^{h} + g^{h}$$
  
 $\uparrow$   
like  $w$ 

•

### Construct functions based on shape functions

$$w^{h} = \sum_{A=1}^{n} N_{A} c_{A} \qquad \qquad v^{h} = \sum_{A=1}^{n} N_{A} d_{A}$$
$$\alpha^{h} = \alpha N$$

 $g_{1}$  n+1

 $\boldsymbol{\mathcal{Y}}$ 



## Elastostatics: matrix

Use weak form, plug-in Galerkin approximation

 $\sum_{B=1}^{n} K_{AB} d_{B} = F_{A} \qquad K_{AB} = \int_{0}^{1} N_{A,x} N_{b,x} dx$  $F_{A} = \int_{0}^{1} N_{A} f dx + N_{A}(0)h - \int_{0}^{1} N_{A,x} N_{n+1,x} dxg$ 

it all boils down to...

 $K \cdot d = F$  stiffness matrix force vector

# Properties of $K \cdot d = F$

Stiffness matrix is
 symmetric
 banded
 positive-definite

Displacement vector = unknowns only
Can use any linear algebra solver to find solution

# Multi-D deformation

 $abla \cdot \boldsymbol{\sigma} + \boldsymbol{f} = \boldsymbol{0} \quad \operatorname{in} \Omega \quad \longleftarrow \text{ equilibrium}$   $\boldsymbol{u} = \boldsymbol{g} \quad \operatorname{on} \Gamma_g \quad \longleftarrow \text{ e.g., clamp}$  $\boldsymbol{\sigma} \cdot \boldsymbol{n} = \boldsymbol{h} \quad \operatorname{on} \Gamma_h \quad \longleftarrow \text{ e.g., confinement}$ 

![](_page_16_Picture_2.jpeg)

Constitutive relation given  $u \rightarrow \det \sigma$ 

e.g., elasticity, plasticity

# FEM program

![](_page_17_Figure_1.jpeg)

# Element technology: 2D

![](_page_18_Picture_1.jpeg)

Serendipity family of quads

![](_page_18_Figure_3.jpeg)

Lagrange family of quads

Standard triangular elements

`Gauss integration point
`displacement node

![](_page_19_Figure_2.jpeg)

![](_page_20_Picture_2.jpeg)

![](_page_21_Picture_2.jpeg)

# Modeling ingredients $\sigma_a$

![](_page_22_Picture_2.jpeg)

![](_page_23_Picture_2.jpeg)

![](_page_24_Picture_0.jpeg)

# Hyperbolic: LSST array

![](_page_25_Figure_1.jpeg)

# Geometry and B.C.s

![](_page_26_Figure_1.jpeg)

# Material parameters

![](_page_27_Figure_1.jpeg)

![](_page_27_Figure_2.jpeg)

#### shear modulus

### degradation & damping

# Input base acceleration

![](_page_28_Figure_1.jpeg)

# Acceleration output

![](_page_29_Figure_1.jpeg)

### Model ingredients

- Nonlinear continuum mechanics
- Robust constitutive theory
- Computational inelasticity
- Nonlinear finite elements

![](_page_30_Figure_6.jpeg)

### Model ingredients

- Nonlinear continuum mechanics
- Robust constitutive theory
- Computational inelasticity
- Nonlinear finite elements

![](_page_31_Figure_6.jpeg)

### Model ingredients

- Nonlinear continuum mechanics
- Robust constitutive theory
- Computational inelasticity
- Nonlinear finite elements

![](_page_32_Figure_6.jpeg)

### Model ingredients

- Nonlinear continuum mechanics
- Robust constitutive theory
- Computational inelasticity
- Nonlinear finite elements

![](_page_33_Picture_6.jpeg)

Displacement node
 Pressure node

# Plane-strain compress

![](_page_34_Figure_1.jpeg)

# Plane-strain compress

![](_page_35_Figure_1.jpeg)

![](_page_35_Figure_2.jpeg)

shear strain and flow

fluid pressure

# Plane-strain compress

![](_page_36_Figure_1.jpeg)

![](_page_36_Figure_2.jpeg)

![](_page_37_Picture_0.jpeg)