Numerical implementation of a novel elastoplastic model for sands based on critical state plasticity

José E. Andrade and Ronaldo I. Borja

jandrade@stanford.edu

Department of Civil & Environmental Engineering
Stanford, CA 94305
Structure of the presentation

- Motivation
Structure of the presentation

- Motivation
- The constitutive model
Structure of the presentation

Motivation
The constitutive model
Numerical implementation
Structure of the presentation

- Motivation
- The constitutive model
- Numerical implementation
- Numerical examples
Structure of the presentation

- Motivation
- The constitutive model
- Numerical implementation
- Numerical examples
- Conclusions
Structure of the presentation

- Motivation
- The constitutive model
- Numerical implementation
- Numerical examples
- Conclusions
- Ongoing/future work
Structure of the presentation

- Motivation
- The constitutive model
- Numerical implementation
- Numerical examples
- Conclusions
- Ongoing/future work
- Questions
Motivation

- Critical state plasticity models (e.g. Cam-Clay) provide simple yet effective framework for modeling soil behavior.
- Drawback: Classical Cam-Clay poorly represents sands on ‘dry’ side.
- More accurate representation of soil behavior can be achieved using meso-scale.
- Objective: To develop a simple model based on critical state plasticity accounting for possible inhomogeneities at meso-scale.
- Application: Modeling instability of dense \textit{and} loose sands (e.g. shear band localization).
Hyperelastic model

- Hyperelastic model derived from stored energy function
 \[\Psi^e (\epsilon^e) = \hat{\Psi}^e (\epsilon^e_v, \epsilon^e_s) \] such that
 \[\sigma (\epsilon^e) = \frac{\partial \Psi^e}{\partial \epsilon^e} \]

where \(\epsilon^e_v = \text{tr} \ \epsilon^e \) and \(\epsilon^e_s = \sqrt{\frac{2}{3}} \| \text{dev} \ \epsilon^e \| \)

- Resulting invariants of the Cauchy stress tensor
 \[p = \frac{1}{3} \text{tr} \ \sigma = p (\epsilon^e_v, \epsilon^e_s) \] and \[q = \sqrt{\frac{3}{2}} \| \text{dev} \ \sigma \| = q (\epsilon^e_v, \epsilon^e_s) \]

- Material parameters: compressibility index \(\kappa \), reference pressure \(p_0 \) at reference elastic strain \(\epsilon^e_{v0} \), initial elastic shear modulus \(\mu_0 \), and coupling constant \(\tilde{\alpha} \)
Plasticity model

The yield surface has the form

\[F(\sigma, p_i) = q + \eta p \leq 0 \]

where

\[\eta = \begin{cases}
M \left[1 + \ln \left(\frac{p_i}{p}\right)\right] & \text{if } N = 0 \\
M/N \left[1 - (1 - N) \left(\frac{p}{p_i}\right)^{N/(1-N)}\right] & \text{if } N > 0
\end{cases} \]
Plasticity model

The yield surface has the form

\[F(\sigma, p_i) = q + \eta p \leq 0 \]

where

\[\eta = \begin{cases}
M \left[1 + \ln \left(\frac{p_i}{p} \right) \right] & \text{if } N = 0 \\
\frac{M}{N} \left[1 - (1 - N) \left(\frac{p}{p_i} \right)^{N/(1-N)} \right] & \text{if } N > 0
\end{cases} \]

Similarly, the plastic potential

\[Q(\sigma, \bar{p}_i) = q + \bar{\eta} p \]
Plasticity model

The yield surface has the form

\[F(\sigma, p_i) = q + \eta p \leq 0 \]

where

\[\eta = \begin{cases} M \left[1 + \ln \left(\frac{p_i}{p} \right) \right] & \text{if } N = 0 \\ M/N \left[1 - (1 - N) \left(\frac{p}{p_i} \right)^{N/(1-N)} \right] & \text{if } N > 0 \end{cases} \]

Similarly, the plastic potential

\[Q(\sigma, \bar{p}_i) = q + \bar{\eta} p \]

If \(\bar{N} = N \) and \(\bar{p}_i = p_i \) the model is said to be associative.
Typical yield surfaces: meridian plane
Effect of nonassociative flow rule
Flow rule and hardening law

The nonassociative flow rule is defined as

\[\dot{\varepsilon}^p = \dot{\lambda} \frac{\partial Q}{\partial \sigma} = \dot{\lambda} \left[\frac{1}{3} \beta \frac{\partial F}{\partial p} \mathbf{1} + \sqrt{\frac{3}{2}} \frac{\partial F}{\partial q} \frac{\text{dev} \sigma}{\| \text{dev} \sigma \|} \right] \]
Flow rule and hardening law

- The nonassociative flow rule is defined as

\[
\dot{\varepsilon}^p = \dot{\lambda} \frac{\partial Q}{\partial \sigma} = \dot{\lambda} \left[\frac{1}{3} \beta \frac{\partial F}{\partial p} \mathbf{1} + \sqrt{\frac{3}{2}} \frac{\partial F}{\partial q} \frac{\text{dev} \sigma}{\| \text{dev} \sigma \|} \right]
\]

- The hardening law is given by

\[
\dot{p}_i = h (p_i^* - p_i) \dot{\varepsilon}^p = h (p_i^* - p_i) \dot{\lambda}
\]

where

\[
\frac{p_i^*}{p} = \begin{cases}
\exp \left(\frac{\bar{\alpha} \psi_i}{M} \right) & \text{if } \bar{N} = N = 0 \\
(1 - \bar{\alpha} \psi_i N / M)^{(N-1)/N} & \text{if } 0 \leq \bar{N} \leq N \neq 0
\end{cases}
\]

with \(\bar{\alpha} \beta = \alpha\) and \(\beta = (1 - N) / (1 - \bar{N})\)
So, what is ψ_i?

State parameter provides info on relative density of soil: meso-scale approach using CT-scan technology.
Maximum dilatancy: $\frac{p_i^*}{p}$

![Graph showing the relationship between ψ_i and $\frac{p_i^*}{p}$ for different values of N. The graph displays three curves: $N=0$, $N=0.25$, and $N=0.5$. The curves show a decrease in $\frac{p_i^*}{p}$ as ψ_i increases.]
Numerical implementation

- Fully implicit stress-point integration in strain space i.e.,

\[r(x) = \begin{cases}
\epsilon_v^e - \epsilon_v^{e\text{tr}} + \Delta \lambda \beta \partial_p F \\
\epsilon_s^e - \epsilon_s^{e\text{tr}} + \Delta \lambda \partial_q F \\
F
\end{cases} \]

where \(x = \{\epsilon_v^e, \epsilon_s^e, \Delta \lambda\}^t \)
Numerical implementation

- Fully implicit stress-point integration in strain space i.e.,

\[
\mathbf{r}(\mathbf{x}) = \begin{cases}
\varepsilon_v^e - \varepsilon_v^{e\text{tr}} + \Delta\lambda\beta \partial_p F \\
\varepsilon_s^e - \varepsilon_s^{e\text{tr}} + \Delta\lambda \partial_q F \\
F
\end{cases}
\]

where \(\mathbf{x} = \{\varepsilon_v^e, \varepsilon_s^e, \Delta\lambda\}^t \)

- Plus, one sub-local Newton iteration to solve for \(p_i \) as it is embedded in the evolution equations. We have sub-local residual

\[
r(p_i) = p_i - p_{i,n} - \Delta\lambda h (p_i^* - p_i)
\]
Algorithmic tangents

Local algorithmic tangent

\[r'(x) = \frac{\partial r}{\partial x} \]

with trial elastic strains \(\epsilon^e_{v\text{tr}} \) and \(\epsilon^e_{s\text{tr}} \) fixed
Algorithmic tangents

- Local algorithmic tangent

\[r'(x) = \frac{\partial r}{\partial x} \]

with trial elastic strains \(\varepsilon_{v}^{e_{\text{tr}}} \) and \(\varepsilon_{s}^{e_{\text{tr}}} \) fixed

- Similarly, the global consistent tangent at time \(t_{n+1} \) is obtained by

\[c = \left. \frac{\partial \sigma_{n+1}}{\partial \varepsilon_{n+1}} \right|_{x} \equiv \left. \frac{\partial \sigma_{n+1}}{\partial \varepsilon_{e_{\text{tr}} n+1}} \right|_{x} \]

where,

\[\sigma_{n+1} = p_{n+1} 1 + \sqrt{\frac{2}{3}} q_{n+1} \hat{n}_{n+1} \]
Consistent tangent operator

We calculate c using the converged local tangent r'. By the chain rule

$$
c = 1 \otimes \left(D_{11} \frac{\partial \epsilon_e^e}{\partial \epsilon} + D_{12} \frac{\partial \epsilon_s^e}{\partial \epsilon} \right) + \sqrt{\frac{2}{3}} \mathbf{n} \otimes \left(D_{21} \frac{\partial \epsilon_e^e}{\partial \epsilon} + D_{22} \frac{\partial \epsilon_s^e}{\partial \epsilon} \right) + \frac{2q}{3\epsilon_s^{e\text{tr}}} \left(\mathbf{I} - \frac{1}{3} 1 \otimes 1 - \mathbf{n} \otimes \mathbf{n} \right)
$$

where, recalling r, we have

$$
\frac{\partial x}{\partial \epsilon} = - \begin{pmatrix} \frac{\partial r}{\partial x} \bigg|_{\epsilon_e^{\text{tr}}, \epsilon_v^{\text{tr}}} \\ \frac{\partial r}{\partial x} \bigg|_{r'} \end{pmatrix}^{-1} \cdot \frac{\partial r}{\partial \epsilon} \bigg|_x
$$
\(r' \) and \(c \equiv \) quadratic convergence

![Graph showing iteration number vs. relative residual norm for different step numbers and tolerance levels.](image-url)
r' and $c \equiv$ quadratic convergence
Finally... A BVP: ν_0
Finally... A BVP: $\det A^\text{ep}$
Finally... A BVP: Some comparisons

![Graph showing comparisons between homogeneous and inhomogeneous materials.](image-url)
Finally... A BVP: Some comparisons
Closure

- We have presented a novel nonassociative elastoplastic constitutive model for sands.
- Fully implicit numerical integration using return mapping provides C.T.O. in closed-form.
- Model capable of capturing typical dense sand behavior such as initial compaction followed by dilation.
- Incorporation of meso-scale information (i.e., relative density) allows more accurate representation.
- Model is capable of capturing strain localization of dense sands.
Ongoing/future work

- Three-invariant enhancement on F and Q: important to distinguish pure tension/pure compression
- Multi-phase formulation via mixture theory
- Use items above to model shear localization of dense saturated sands
- Recall model capable of modeling loose sands also. Modeling loose saturated sands: modeling liquefaction?