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Abstract

It is well established that the mechanical behavior of granular media is strongly influenced

by the media’s microstructure. In this work, the influence of the microstructure is studied by

integrating advances in the areas of geostatistics and computational plasticity, by spatially

varying the porosity on samples of sand. In particular, geostatistical tools are used to char-

acterize and simulate random porosity fields that are then fed into a nonlinear finite element

model. The underlying effective mechanical response of the granular medium is governed by

a newly developed elastoplastic model for sands, which readily incorporates spatial variability

in the porosity field at the meso-scale. The objective of this study is to assess the influence

of heterogeneities in the porosity field on the stability of sand samples. One hundred and

fifty isotropic and anisotropic samples of dense sand are failed under plane-strain compression

tests using Monte Carlo techniques. Results from parametric studies indicate that the axial

strength of a specimen is affected by both the degree and orientation of anisotropy in het-

erogeneous porosity values with anisotropy orientation having a dominant effect, especially

when the bands of high porosity are aligned with the natural orientation of shear banding in

the specimen.
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1 Introduction

Most geotechnical engineering problems are multi-scale in nature because of inherent or in-

duced inhomogeneities existing at different length-scales in geomaterials. Inherent inhomo-

geneities are defined as those resulting from fluctuations in material properties such as per-

meability or strength. Induced inhomogeneities are those imposed by a physical phenomenon

(e.g., deformation) that alters the characteristics of the medium. Figure 1 shows typical scales

relevant to granular materials. All the information pertaining to granular systems, including

inhomogeneities, is encoded at the granular scale and propagated or upscaled through all the

way to the field scale. Indeed, the deformation and flow process in granular materials is a

multi-scale process.
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Figure 1: Multi-scale nature of granular materials. Some portions after [1, 2].

It is well established that the mechanical behavior and flow properties of granular me-

dia are strongly influenced by heterogeneities in the media. Heterogeneities introduce local

‘weaknesses’ that trigger instabilities. For this reason, advanced mechanical models for pre-

dicting the onset of instabilities are most useful when coupled with heterogeneous models for

granular media. Soil variability can be accounted for by coupling random field theory and

numerical tools such as the finite element method [3, 4]. This type of approach has been

used to characterize random fields at the ‘site’ scale. For instance, Griffiths and Fenton [5]

2



have studied the impact of fluctuations in strength characteristics in soils in the context of

bearing capacity and slope stability. Paice et al. [6] have studied the effects of random soil

properties on settlements. Here, a newly developed elastoplastic model for sands is coupled

with a random field simulator to study the behavior of granular material at the ‘meso’ scale.

The meso scale (∼ 10−2 m), as shown in Figure 1, is defined as an intermediate scale between

the specimen scale (∼ 10−1 m) and the granular scale (∼ 10−3 m)

The novel elastoplastic model is based on critical state soil mechanics (CSSM) and intro-

duces a state parameter ψ proposed by Been and Jefferies [7], which controls the dilatancy

and hardening/softening behavior of the samples. Because the granular scale is key to the

behavior of granular media (see Figure 1), the constitutive model obtains information of the

porosity at the meso-scale. Porosity and number of nearest neighbors (coordination number)

jointly define fabric in granular materials, which has been shown to control the mechanical

behavior of such materials [8], thus realistic models for sands must attempt to capture fabric.

One possible way to do so is to explicitly model the material at the granular scale, using

the discrete element method [9], but this makes the modeling excessively expensive and it is

not clear whether the method can simulate accurately the behavior of angular particles such

as sands at this point in time. One possible alternative, which we follow herein, is to use

continuum models that introduce information from lower scales such as the meso-scale. This

meso-scale model has previously been used to simulate the behavior of sands under drained

and undrained conditions using a deterministic framework [10–12]. Here, finite element mod-

els are constructed to simulate the behavior of dense sands under plane-strain loading under

drained conditions. The objective of the study is to couple the mechanical model (finite

element model) with a stochastic model (using Monte Carlo simulations) to systematically

study the impact of inhomogeneities and anisotropies in the stability of plane-strain samples

of dense sands.

Monte Carlo simulations of random porosity fields are generated and used as input to the

mechanical model. Simulations are generated for anisotropic fields, varying both the degree

and orientation of anisotropy. Coupling of random fields with finite element soil models is
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a relatively well-studied problem, and a number of researchers have developed proposals for

efficient simulation [13, 14]. Here, methods developed in the field of Geostatistics are used

[15]. This approach, which relies on a series of conditional simulations of soil properties over

the spatial domain of the specimen, is chosen because of its simple interface with experimental

data. Experiments can be used to characterize the stochastic properties of the random fields,

and conditional simulations of specimens can be performed in the case where properties are

measured in a few locations and unknown in other locations. No coupling with experimental

data is performed here; rather, a parametric study of the effect of random field properties is

used to identify the sensitivity of instability behavior to variations in the underlying porosity

field. The future extension of the work to incorporate experimental data for calibration and

validation of the model will thus be a natural one.

An outline of the paper is as follows. A mechanical model for granular media is first

described in detail. The model for performing Monte Carlo simulations of porosity fields is

then described, and the results are used as input for finite element analyses of both drained

and undrained sand specimens. The finite element analysis results are then summarized and

systematic trends are identified. The relationship between the axial compressive strength of

a specimen and the degree and orientation of anisotropy in heterogeneous porosity values

is investigated. Of particular interest is the orientation of anisotropies in the specimen, in

relation to the natural orientation of shear banding caused by the loading.

As for notations and symbols used in this paper, bold-faced letters denote tensors and

vectors; the symbol ‘·’ denotes an inner product of two vectors (e.g. a · b = aibi), or a single

contraction of adjacent indices of two tensors (e.g. c · d = cijdjk); the symbol ‘:’ denotes an

inner product of two second-order tensors (e.g. c : d = cijdij), or a double contraction of

adjacent indices of tensors of rank two and higher (e.g. C : εe = Cijklε
e
kl); the symbol ‘⊗’

denotes a juxtaposition, e.g., (a⊗b)ij = aibj . Finally, for any symmetric second order tensors

α and β, (α⊗ β)ijkl = αijβkl, (α⊕ β)ijkl = βikαjl, and (α	 β)ijkl = αilβjk.
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2 Mechanical model: constitutive model for sands

It is well documented in the literature that the mechanical behavior of granular materials is

governed by the coordination number and the forces applied at the contact points at each

grain. Unfortunately, current models (and computational power) do not allow us to look at

the grain scale to simulate the behavior of assemblies of grains as in the case of sands. One

possible alternative is to develop macroscopic models that can include fine-scale details key for

the behavior of granular bodies. A recently developed model for sands includes information

about the relative density at a point in the sample via the state parameter ψ [11, 12]. The state

parameter ψ was first introduced by Been and Jefferies [7] to quantify the distance, in specific

volume, v, from the critical state at a certain mean normal stress. Hence the state parameter

serves to better quantify the behavior of sands relative to their density and consequently

has been used in the development of plasticity models (see for example [11, 12, 16, 17]). A

geometrical interpretation for ψ is shown in Figure 2. Depending on the sign of the state

parameter, a material point is said to be denser than critical (below the critical state line

(CSL), ψ < 0) or looser than critical (above CSL, ψ > 0). It is well know that the load-

displacement and dilatancy of sand samples are sharply distinct depending on whether the

samples are loose or dense. Hence, the state parameter is key to capturing the behavior of

sands accurately.

In this paper, we use the model developed by Borja and Andrade [11, 12] to study the

effect of structured specific volume fields across specimens of dense sands (i.e. ψ < 0 on

average). Here we summarize some of the most salient features of the infinitesimal model

for completeness and clarity of presentation. The interested reader is referred to [11, 12] for

details regarding the elastoplastic model under small and large strains and their respective

numerical implementation. However, all the numerical results presented herein are obtained

using the finite deformation theory. The elastic response of the model is hyperelastic and thus

governed by a stored energy density function Ψe (εe) such that the effective stress tensor is

given by

σ′ =
∂Ψe

∂εe
(2.1)
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Figure 2: Geometric representation of the state parameter ψ.

where the stored energy is an isotropic function of the elastic strain tensor εe. The total stress

tensor σ is decomposed according to Terzaghi’s well known expression for fully saturated soils

i.e., σ = σ′−pδ, where p is the pore fluid pressure and is negative under compression, following

continuum mechanics convention. The tensor δ is the second-order identity.

Let us define three independent invariants for the effective stress tensor σ′,

p′ =
1
3

trσ′, q =

√
2
3
‖s′‖, 1√

6
cos 3θ =

tr s′3

χ3
(2.2)

where s′ = σ′−p′δ is the deviatoric component of the effective stress tensor, and χ =
√

tr s′2.

The invariant p′ is the mean normal effective stress and is assumed to be negative throughout.

Further, θ is the so-called Lode’s angle whose values range from 0 ≤ θ ≤ π/3; it defines an

angle emanating from a tension corner on a deviatoric plane (see Figure 3).

The elastic region in effective stress space is contained by the yield surface which is a

function of the three stress invariants introduced above,

F
(
σ′, πi

)
= F

(
p′, q, θ, πi

)
= ζ (θ) q + p′η

(
p′, πi

)
(2.3)
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with

η =

 M [1 + ln (πi/p
′)] if N = 0

M/N
[
1− (1−N) (p′/πi)

N/(1−N)
]

if N > 0.
(2.4)

The function ζ controls the cross-sectional shape of the yield function on a deviatoric plane

as a function of the Lode’s angle. We adopt the shape function proposed by Gudehus and

Argyris [18, 19] because of its mathematical simplicity i.e.,

ζ (θ) =
(1 + %) + (1− %) cos 3θ

2%
(2.5)

where as shown in Figure 3, the ellipticity constant % controls the form of the cross-section

going from perfectly circular % = 1 to convex triangular for % = 7/9. The shape function

with % < 1 reflects a classical feature in geomaterials, which exhibit higher strength in triaxial

compression. Figure 3 also reflects the geometrical interpretation for parameters M and N

which govern the slope of the CSL and the curvature of the yield surface on a meridian plane,

respectively.

Central to the formulation is the additive decomposition of the strain rate tensor into
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elastic and plastic parts

ε̇ = ε̇e + ε̇p (2.6)

with the plastic component given by the non-associative flow rule

ε̇p = λ̇
∂G

∂σ′ (2.7)

where the scalar λ̇ is the so-called plastic multiplier giving the ‘magnitude’ of plastic defor-

mation. The plastic potential function G is postulated as form-identical to the yield surface

i.e.,

G
(
σ′, πi

)
= G

(
p′, q, θ, πi

)
= ζ (θ) q + p′η

(
p′, πi

)
(2.8)

where

η =

 M [1 + ln (πi/p
′)] if N = 0

M/N
[
1−

(
1−N

)
(p′/πi)

N/(1−N)
]

if N > 0.
(2.9)

When the size parameter πi = πi and the curvature constant N = N , then plastic flow is

associative, otherwise, there is volumetric nonassociativity of plastic flow.

As mentioned earlier, the model is based on CSSM [20]. In these classical models, the

image stress πi coincides with the critical state or the critical state line (CSL). To apply

the model to sands, which exhibit different types of volumetric yielding depending on initial

density, the yield surface is detached from the critical state line along the v-axis. Thus,

the state point (v, p′, q) may now lie either above or below the critical specific volume vc (see

Figure 2) at the same stress p′ depending on whether the sand is looser or denser than critical.

Further, a state parameter ψi is introduced denoting the distance of the same current state

point to vc,i on the CSL at p′ = πi. The relation between ψ and ψi is

ψi = ψ + λ̃ ln
(
πi

p′

)
(2.10)

Hence, ψ is negative below the CSL and positive above it. An upshot of disconnecting the

yield surface from the CSL is that it is no longer possible to locate a state point on the yield
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surface by prescribing p′ and q alone: one also needs to specify the state parameter ψ to

completely describe the state of a point. Furthermore, isochoric plastic flow does not occur

only on the CSL anymore, but could also take place at the image stress point. Finally, the

parameter ψi dictates the amount of plastic dilatancy in the case of dense sands.

Formally, plastic dilatancy is defined by the expression

D := ε̇pv/ε̇
p
s =

η −M

1− N̄
(2.11)

where, ε̇pv and ε̇ps are the volumetric and deviatoric invariants of the plastic strain rate, re-

spectively. This definition is valid for all possible values of η, even for η = 0 where Q is not

a smooth function. However, experimental evidence on a variety of sands suggests that there

exists a maximum possible plastic dilatancy, D∗, which limits a plastic hardening response.

The value of D∗ depends on the state parameter ψi, increasing in value as the state point lies

farther and farther away from the CSL on the dense side. An empirical correlation has been

established experimentally in [16] between the plastic dilatancy D∗ and the state parameter

ψi, and takes the form D∗ = αψi where α ≈ −3.5 for most sands. The corresponding size of

the yield surface is

π∗i
p′

=

 exp(ᾱψi/M) if N̄ = N = 0

(1− ᾱψiN/M)(N−1)/N if 0 ≤ N̄ ≤ N 6= 0
(2.12)

where

ᾱβ = α, β =
1−N

1− N̄
(2.13)

In the above expression we have introduced a non-associativity parameter β ≤ 1, where β = 1

in the associative case.

For elastoplastic response, the standard consistency condition on the yield function results

in a hardening law given by the equation

π̇i = h (π∗i − πi) ε̇ps (2.14)
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where h is a hardening material constant. Since h > 0 and ε̇ps > 0, the sign of π̇i, controlling

the evolution of the yield surface depends on the sign of (π∗i − πi): the yield surface expands

if π∗i < πi (hardening), the yield surface contracts if π∗i > πi (softening), the size of the yield

surface remains unchanged if π∗i = πi (perfect plasticity). In classical Cam-Clay theory the

evolution of the yield surface depends on the sign of ε̇pv, i.e., the yield surface expands under

compaction and contracts under dilation. However, as noted above, this simple criterion does

not adequately capture the hardening/softening responses of sands, which are shown to be

dependent on the limit hardening plastic dilatancy D∗, i.e., yield surface expansion if D < D∗

and contraction if D > D∗.

3 Characterization and simulation of material properties

A series of numerical examples will be used in conjunction with the above modeling technique

to assess the effect of several types of material inhomogeneities. The porosity fields are spec-

ified as random but with spatial structure. Once the fields have been defined appropriately,

Monte Carlo simulations are created and used as input for the above mechanical models.

Details regarding the characterization and simulation of random fields are provided in the

following section.

3.1 Distribution of porosity values

Porosity, φf , is the material parameter being explicitly modeled as random. Thus, porosity

values are modeled as random variables taking values between 0.55 and 0.65, with a mean value

of 0.57 (this mean value of void ratio corresponds to that used in [21] to study the strength

of dense sands). An exponential probability distribution is used, based on the findings of

Shahinpoor [22], and a shift and truncation of the basic exponential distribution is used to

provide the appropriate mean value and range of porosity values. This distribution can be

described using as a probability density function (PDF)
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f(x) =
P (x ≤ φf < x+ dx)

dx
=

 49.66e−50(x−0.55) if 0.55 ≤ x < 0.65

0 otherwise
(3.1)

where, following typical random variable notation, f(�) has been used to denote the PDF. By

integrating this function over the appropriate bounds, the cumulative distribution function

(CDF) for φf is obtained

F (x) = P (φf < x) =


0 if x ≤ 0.55

1−e−50(x−0.55)

1−e−50(0.1) if 0.55 < x ≤ 0.65

1 if x > 0.65

(3.2)

where F (�) is used to denote the CDF.

A plot of the PDF from Equation (3.1) is shown in Figure 4a. The φf values associated

with large f(x) values (i.e., those equal to or slightly larger than 0.55) are those most likely

to occur when simulations are performed. For comparison, a histogram of simulated φf values

from one of the simulations below is shown in Figure 4b. This histogram has the same

general shape as the PDF, but because the simulation consists of only a finite number of

random samples from this distribution, there will be some variation and the two will not

match exactly. Implications of this will be discussed later.

3.2 Spatial dependence

The probabilistic model of the previous section describes the distribution of porosity values

at single locations; once porosity values are considered within a ‘laboratory’ specimen (see

Figure 1 for relative scale), these values are treated as spatially correlated random variables.

That is, porosity values at individual locations will vary from simulation to simulation, but in

a manner that exhibits spatial structure at the meso-scale. Although, at larger scales, porosity

values can be modeled as decreasing systematically with increasing depth [23], at the scale of

interest here it is appropriate to assume no trend in mean values or distributions of porosity.

This condition is termed stationarity in random field literature, and slightly simplifies the
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Figure 4: (a) Probability density function for porosity values. (b) Histogram of porosity
values from a single simulation.

calculations below.

The stochastic dependence between porosity values at any two points is modeled using

a covariance function. For variables having a multivariate Gaussian probability distribution,

this fully describes the joint dependence between values at two points, and the analytical

equations are very tractable. Porosity does not seem to have a Gaussian distribution [22],

however, and stochastic dependence among variables having the exponential distribution given

by Equation (3.1) is not fully defined by a covariance. To take advantage of the desirable

property of multivariate Gaussian models, the data of interest is transformed using a normal-

score mapping. First spatially dependent Gaussian random fields are simulated, and then

each value of the Gaussian field is mapped into the target probability distribution using the

relationship

x = F−1 (Φ (z)) (3.3)

where x is the φf data having the target distribution, F−1(�) is the inverse of the cumulative
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distribution function given in Equation (3.2), Φ(�) is the cumulative distribution function

of the standard Gaussian distribution and z is one value from the simulated Gaussian data.

This transformation yields x values with the proper distribution if z comes from the stan-

dard Gaussian distribution. With the proper marginal distribution accounted for by this

transformation, it is sufficient to simulate standard Gaussian fields.

Spatial dependence of the Gaussian random field is characterized using the semicovariance,

in the form of a semivariogram [15]. The semivariogram, denoted γ(h), is equal to half of the

variance of the increment in data points separated by a distance h

γ(h) =
1
2
V ar [Z(u)− Z(u + h)] (3.4)

where Z(u) is the distribution of the Gaussian random variable at location u. Note that

an upper-case Z is used to denote an uncertain quantity (i.e., a random variable), and a

lower-case z is used in Equation (3.3) to denote a specific numerical value taken by the

random variable Z. The vector distance h accounts for both separation length and direction.

Note that this is the variance of the underlying Gaussian distributed variables rather than the

variables having the final target distribution. This semivariogram is often used in geostatistics

instead of a covariance because it requires second-order stationarity of only the increments

and not the underlying process, but here and in many other cases the the two can be used

interchangeably. Tools for estimating semivariograms using experimental data are available

in many GIS software packages, as well as stand-alone packages (e.g., [24]).

In the examples below, a semivariogram of the following form is used

γ(h) =


3
2

((
h1
a

)2
+

(
h2
b

)2
) 1

2

− 1
2

((
h1
a

)2
+

(
h2
b

)2
) 3

2

if
(

h1
a

)2
+

(
h2
b

)2
≤ 1

1 if
(

h1
a

)2
+

(
h2
b

)2
> 1

(3.5)

where h1 and h2 are the scalar distances along the field’s major and minor axes, respectively,

corresponding to the vector distance h. This function is termed a spherical semivarogram

in the Geostatistics literature. The parameters a and b specify how quickly the spatial de-
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pendence decreases with increasing separation distance between the points of interest. This

functional form is commonly used for modeling spatially dependent phenomena [15], and the

simulations using this model (shown below) are reasonable representations of realistic porosity

values, but a few other functional forms can be substituted here if future data suggest that

an alternate model is more appropriate. In this model, if a = b, then the random field is

isotropic. For results below, an ‘anisotropy ratio’, a/b, is provided to indicate the degree of

anisotropy in the field. The angle of the major axis with respect to the horizontal is also

given. To ensure that the fields with differing anisotropy ratios have correlation structure at

approximately the same scale, a and b are chosen such that a × b is approximately constant

for all simulations.

It is important to note that the semivariogram model of Equation (3.5) is describing the

Gaussian variables z, rather than the porosity values x obtained using Equation (3.3). The

covariance structures of the two are often similar, especially if the transformed distribution is

similar to the original Gaussian distribution ([25, 26]). Here the transformed random variable

is not similar to the Gaussian distribution, so a further check was performed to investigate

any potential significant differences. Empirical semicovariances were computed for one set of

simulated data, both before and after the transformation, and the results are compared to

the originally specified semivariogram in Figure 5. Results are shown for an isotropic case, so

that the semivariogram is a function of only the separation distance (and not the orientation).

The empirical semivariograms for the original and transformed data are surprisingly similar.

Note that the slight difference between the specified semivariogram and observed result for

the non-transformed data is due to the finite sample size. While the finite area (relative to

the correlation length) used to perform the estimation limits causes some difference between

the observed and specified semivariogram, the high resolution within that area causes the

empirical semivariogram to vary smoothly, unlike typical results from more sparsely sampled

measured data. This smooth variation does not mean that the sample area is large enough

to have converged to the specified semivariogram, as can be seen in the figure. The results

from Figure 5 suggest that in this specific case the semivariogram can be interpreted as
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Figure 5: Specified and empirical semivarigrams for one simulation of the isotropic porosity
field.

the semivariogram for the transformed data, but this will not be true generally. This is an

important consideration if the semivariogram is to be estimated from experimental data.

Once spatial dependence of the Gaussian random field has been defined, realizations of

porosity can be generated using a sequential simulation approach. A series of 20× 40 grids of

porosity values are desired for input into the mechanical model described above. Thus, a set

of simulated joint realizations of porosity values are needed for these 800 elements, consistent

with the above stochastic model.

It is straightforward to directly simulate the needed spatially dependent Gaussian field,

but here a sequential conditional simulation approach is used. The proposed approach is

only slightly more complex than a direct simulation, but is more flexible because it can allow

incorporation of measurements at some locations. While measurements are not incorporated

here, it is a natural future extension of the proposed framework.

To perform a sequential conditional simulation, first an arbitrary location in the grid is

selected and a simulation is generated from the standard Gaussian distribution. For each

following step, an arbitrary unsampled location is chosen, and a simulation is generated,
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conditional on values of the previously simulated data point(s). Because the field is Gaussian,

the needed conditional distribution is easy to compute. Let Z(i) denote the random field

value at unsampled location u(i), and Z(sampled) denote the random field values at previously

simulated locations u(sampled). The joint distribution of Z(i) and Z(sampled) is given by

 Z(i)

Z(sampled)

 ∼ N


 0

0

 ,
 1 Σ12

Σ21 Σ22


 (3.6)

where ∼ N(µ,Σ) denotes that the vector of random variables has a joint normal distribution

with mean values µ and covariance matrix Σ (note that µ and Σ have been partitioned in

Equation (3.6), to clarify the matrix operations below). The vector Z(sampled) represents the

data values at the previously simulated locations, and 0 is a vector of zeros having the same

size as Z(sampled) (i.e., the mean vector, which is equal to zero because Z is standardized).

The covariance matrix is dependent upon the locations of the previously simulated data

points; each element of the matrix can be computed by evaluating Equation (3.5) and using

the property that the covariance between locations with separation distance h is equal to

1− γ(h). Note that all variances are equal to one because the field is standardized.

Given this model, the distribution of Z(i) conditional upon the original data points is given

by (
Z(i)|Z(sampled) = z

)
∼ N

(
Σ12 ·Σ−1

22 · z, 1−Σ12 ·Σ−1
22 ·Σ21

)
(3.7)

where z is the vector of previously simulated numerical values. Note that Z(·) is a random

variable representing the model for uncertain porosities prior to simulation; the numerical

values z were obtained in the previous steps of the simulation. A value for Z(i) is simulated

from this conditional distribution, and this value is then treated as a fixed data point for

later simulations at other locations (i.e., Z(i) is included in the vector Z(sampled) of Equation

(3.7)). The conditional simulation process is repeated until all values in the field have been

simulated.

Each value in the resulting simulated field is then transformed using Equation (3.3), and

the resulting transformed field has the target probability distribution for porosity values. Each
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simulation obtained in this manner represents one potential realization of porosity values at

the meso-scale. Example simulated fields obtained using this method are shown below in

Figure 8.

3.3 Simulating random fields

A series of simulations were performed using the above random fields simulation approach.

To assess the influence of various porosity field properties on the stability of sand samples,

simulations were performed for a range of conditions. It was expected that the degree of

anisotropy of the sample and the orientation of the anisotropy would have significant effects

on sample stability, so these properties were varied parametrically and several simulations were

generated for each set of parameter values. The parameter values considered are summarized

in Table 1.

The random field simulations vary within the specimen, but mean porosity values asso-

ciated with each specimen also vary from simulation to simulation. This is expected given

the stochastic model described above, but the specimen-to-specimen variability in mechanical

behavior induced by these variations makes it more difficult to compare trends due to vari-

ation in the degree and orientation of anisotropy. To address this challenge, another set of

simulations was performed, but the porosity values from this second set of simulations were

normalized so that the mean and standard deviation of porosity values within each Monte

Carlo simulation was constant. Later, instability results will be shown for both the normalized

and non-normalized simulations, to demonstrate the value of this normalization.

3.4 Calibration with experimental data

The approach described above can easily utilize experimental data for two purposes: to de-

termine an appropriate probability distribution and spatial correlation function for φf , or

to incorporate measured porosity values into simulations of a specimen that includes some

unmeasured locations.

To determine an appropriate probability distribution, one can use methods of statistical
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Number of simulations
a/b orientation 20× 40 20× 40–normalized 10× 20
1 n.a. 12 1 1
10 0 12 1 -
10 30 12 1 -
10 45 12 1 -
10 60 12 1 -
10 90 12 1 -
100 0 12 1 1
100 30 12 1 1
100 45 12 1 1
100 60 12 1 1
100 90 12 1 1

Table 1: Summary of simulations performed showing anisotropy ratios, orientations, and mesh
resolution.

inference. Porosity measurements taken at many locations in a sample can be used to generate

a histogram analogous to that shown in Figure 4b. The data can be used to estimate the mean

and standard deviation of porosity in that sample, and a PDF can be chosen to represent

the complete histogram (e.g., [27]). Given a sufficient number of porosity measurements,

the PDF of Equation (3.1) could thus be refined to represent the particular material being

studied. While this calibration is not a focus of the present manuscript, it is a well-developed

approach that is simple to incorporate within the framework described here. One source of

data that could be used for calibration at the meso-scale is x-ray tomography. Figure 6 shows

example results obtained using this method. By converting this graphical data to numerical

values of properties such as density, and then creating a histogram of these values, one can

fit a probability density function to use as a replacement for Equation (3.1). The same data

can be used to develop an empirical estimate of the semivariogram defined by Equation (3.4).

Empirical semivariograms are generated by observing differences in pairs of porosity values, as

a function of separation distance and orientation. Sample variances of these paired differences

provide a direct estimate of a semivariogram that could be used to replace the one given in

Equation (3.4) [15].

The above framework can also incorporate measured values of φf when performing sim-

ulations. This is done by inputing the measured values into the Gaussian field (after back-

18



Figure 6: Cross-section through a biaxial test specimen of silica sand analyzed by X-ray
computed tomography, white spot is a piece of gravel (after [12], courtesy of Prof. A. Rechen-
macher).

transforming the data by inverting Equation (3.3)), and then treating the measured values

as if they were previously simulated, when using Equation (3.6) to simulate values at the

remaining locations. That is, the measured values will be included in Z(sampled) in Equation

(3.6) for simulations at all unsample locations. The resulting simulated field will always agree

with observed values at sampled locations, and at other locations it will be consistent with

the specified stochastic properties of the field. The ease of incorporating measurements using

this approach is one reason why it was proposed above. Incorporation of measurements has

been shown to be useful for macro-scale granular media instability problems (e.g., [28]). The

approach has not yet been applied to meso-scale problems, but its tractability is appealing.

4 Numerical simulations

In this section, we use the above-described framework for coupling an accurate mechanical

model for sands with Monte Carlo simulations. The numerical model treats the porosity as

a spatially correlated random variable. Plane-strain compression in samples of dense sand

are simulated after the mechanical model has been calibrated using experimental data. The
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objective of the plane-strain simulations is to highlight the importance of meso-scale inho-

mogeneities. In particular, the effect of anisotropy in the porosity is systematically studied.

Anisotropy ratios and orientation of the anisotropy principal axis are systematically varied

to study their effect on the stability of dense sand samples under plane-strain compression.

Table 1 shows the different anisotropy ratios and principal axis orientations considered in

this paper as well as the number of simulations performed at different mesh resolutions. All

simulations performed in this section pertain to samples of macroscopically dense samples

(i.e., even inhomogeneous samples are still dense on average).

4.1 Calibration of the Constitutive Model

In order to perform accurate predictions and to demonstrate the validity of the proposed

model for sands, we present some calibration and prediction results based on experimental

results obtained by Cornforth [21]. The constitutive model used here is calibrated for Brasted

sand under ‘perfectly homogeneous’ conditions based on drained triaxial compression results.

Then, the same sand, at the same initial state, is failed numerically and experimentally

under plane-strain conditions to confirm the adequacy of the calibration. All of the material

parameters obtained in the calibration step (under triaxial compression) are kept constant for

the prediction phase (under plane-strain compression). This set of experiments provides a true

calibration/prediction set since the triaxial compression and plane strain tests were conducted

at the same initial state. The only difference is introduced by the different boundary conditions

imposed.

The triaxial compression tests were performed on loose and dense samples with void ratios

e = 0.754 and e = 0.570, coefficients of lateral earth pressure K0 = 0.447 and K0 = 0.381 and

initial vertical pressures, p0 = −390 kPa and p0 = −426 kPa, respectively. This testing pair

was used to determine density-independent hyperelastic and plastic parameters that could be

fit to the data in order to reproduce accurate plots of axial strain versus deviator stress and

axial strain versus volumetric strain. Density-specific parameters, including the size of the

initial yield surface, πi, and the hardening coefficient, h (see Section 2), were allowed to differ
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Figure 7: Constitutive model predictions of (a) principal stresses and (b) volumetric strain
versus axial strain for dense Brasted sand loaded under plane strain conditions.

Test e0 K0 p0

Loose
Triaxial Compression 0.754 0.447 390 kPa
Plane Strain 0.721 0.444 391 kPa

Dense
Triaxial Compression 0.570 0.379 426 kPa
Plane Strain 0.572 0.381 425 kPa

Table 2: Summary of laboratory tests used to calibrate the constitutive model (from [21]).

between the loose and dense samples.

The predictive ability of the model was verified using the parameters developed from

triaxial compression testing to predict behavior for identically consolidated samples under

plane strain loading conditions. Plots of principal stresses versus axial strain and volumetric

strain versus axial strain generated by the constitutive model and experimental data are

superimposed in Figure 7 for the plane strain test on dense Brasted sand.

A summary of the testing conditions used to calibrate the model parameters is presented

in Table 2. Subsequent analysis in this paper will focus on model predictions for anisotropic

plane strain testing of dense Brasted sand. The hyperelastic and plastic parameters selected

for this sample are presented in Tables 3 and 4.
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4.2 Plane-strain compression simulations

Drained plane strain simulations on samples of macroscopically dense sand with average spe-

cific volume of 1.572 were performed in this section. The main objective of these simulations

was to analyze the impact of anisotropy and its direction on the stability of dense sands. The

degree of anisotropy can be measured by the anisotropy ratio a/b (cf. equation (3.5), such

that a/b = 1 signifies isotropic conditions, whereas a/b 6= 1 would represent anisotropic condi-

tions. As shown in Table 1, three particular cases were considered herein, a/b = 1 (isotropic),

a/b = 10, and a/b = 100. A value of a/b > 1 indicates a stronger correlation in the principal

direction associated with the parameter a. Similarly, the principal directions of anisotropy

(not to be confused with the principal stress directions) are rotated systematically using the

angles {0, 30, 45, 60, 90} degrees from the horizontal. Figures 8 and 9 show ‘typical’ realiza-

tions of the initial specific volume for the aforementioned anisotropy ratios and orientations.

These figures also show the level of discretization utilized in these simulations where regular

meshes comprised of 20×40 4-node quadrilateral elements were utilized. This fine level of dis-

cretization was necessary to capture the gradients in the random porosity field. As mentioned

in Section 3.2, realizations for the initial specific volume random field were obtained using a

20× 40 grid and hence the finite element resolution is set to match that of the Monte Carlo

simulation for the initial porosity. Thus, each finite element represents a region with initially

constant porosity. The remaining material parameters required for a full material description

are shown in Tables 3 and 4. As mentioned before, these material parameters correspond to

a Brasted sand such as that presented in the calibration section and used experimentally in

[21]. Incidentally, this constitutive model has also been recently used to capture the behav-

ior of loose sand successfully [29]. In the numerical simulations performed here, all material

parameters were treated as constant and deterministic, except for the specific volume. Also,

the material parameters chosen reflect an initial anisotropic consolidation ratio K0 = 0.381

in all drained samples.

For the plane-strain simulations presented here, and as shown in Table 1, two main sets

of random field realizations were performed. The first set of 132 realizations (third column in
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Symbol Value Parameter
κ̃ 0.0015 compressibility
α0 0 coupling coefficient
µ0 45000 kPa shear modulus
p0 −135 kPa reference pressure
εev0 0 reference strain

Table 3: Summary of hyperelastic material parameters for drained plane strain compression
problems.

Symbol Value Parameter

λ̃ 0.02 compressibility
M 1.27 critical state parameter
vc0 1.89 reference specific volume
N 0.4 for yield function
N 0.4 for plastic potential
% 0.78 ellipticity
h 120 hardening coefficient for dense/loose samples

Table 4: Summary of plastic material parameters for drained plane strain compression prob-
lems.

Table 1) consists of non-normalized random field simulations where the initial porosity fields

are allowed to have slightly different mean and standard deviation from one sample to another.

This then creates a “sample-to-sample” variability induced by the discretization (if we could

generate continuum random field realizations, they would have the same mean and standard

deviation). The second set of Monte Carlo random field simulations, shown in column four,

correspond to normalized samples with fixed sample means and standard deviations. Less

variability is expected in the response of these samples since the sample-to-sample variability

in mean and standard deviation has been eliminated and the only differences in behavior

are due to the anisotropy structure. Realizations of the normalized initial porosity fields are

shown in Figures 8 and 9 (i.e., for samples in column 4 in Table 1)

The initial stress conditions are anisotropic with an initial axial stress of 225 kPa and

initial lateral stress of 90 kPa. Subsequently, the axial stress is increased while the lateral

stress is kept constant. The boundary conditions are as follows. The top and bottom faces of

the specimens are displacement controlled (Dirichlet B.C.’s) with no vertical displacement on

the bottom face and displacement uniformly downward on the top face to replicate smooth
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Figure 8: Initial specific volume for samples with anisotropy ratio of 10: (a) homogeneous;
(b) principal axis 0◦; (c) 30◦; (d) 45◦; (e) 60◦; (f) 90◦.
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Figure 9: Initial specific volume for samples with anisotropy ratio of 100: (a) isotropic; (b)
principal axis 0◦; (c) 30◦; (d) 45◦; (e) 60◦; (f) 90◦.

platens. Similarly, the lateral faces are Neumann B.C.’s where a (constant) lateral confining

stress is prescribed. These B.C.’s replicate those of a typical plane-strain compression test in

the laboratory.

Figure 10a shows the nominal axial stress exerted on the top face of the samples as a

function of the nominal axial strain. These responses are plotted for all anisotropic samples

as well as for the inhomogeneous, isotropic samples (i.e., a/b = 1). Additionally, the response

from a perfectly homogeneous sample with an initial specific volume of 1.572 is also plotted for

comparison. It can be seen in Figure 10 that a wide range of responses is obtained even though

the samples have the same macroscopic properties. The anisotropies and inhomogeneities in
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general yield weaker samples that tend to fail before their homogeneous counterpart does.

Failure here is defined as the first instance in which the determinant of the acoustic tensor,

as defined in [11, 12], vanishes somewhere in the sample i.e.,

det A = 0; A = n · cep · n, (4.1)

where

σ̇ = cep : ε̇ (4.2)

and n is the normal to the impending shear band. Incidentally, n is used here to find the

orientation of the impending shear band. Clearly, analyses based on homogeneous samples

yield non-conservative strength values. A subset of axial stress versus axial strain is shown in

Figure 10b where only the response of the normalized samples is plotted. We observe that the

sample-to-sample variability introduces a spread in the force-displacement curves which is not

present in those for the normalized samples. Thus, the sample-to-sample variability in specific

volume produces a scatter that is realistic for physical specimens, while the normalization

tends to remove that effect. In general the stress-strain curves for the normalized samples lie

on top of each other and on top of the homogeneous response. Only the strength characteristics

of the samples differ. Even though the normalized sample results are less scattered, it will

be shown that these show the same trends as their non-normalized counterparts in terms of

overall sample strength and the effect of anisotropies.

Figure 11 reports the compressive strength for all non-normalized samples loaded under

plane strain compression. The compressive strength is taken as the axial stress at the mo-

ment of failure reported in Figure 10. Figure 11 shows the strengths obtained from all 132

simulations performed at a resolution of 20× 40 elements (see Table 1), and therefore a clear

trend is somewhat difficult to see. For this reason, an average is obtained for each one of the

cases studied here: homogeneous, isotropic, anisotropic with a/b = 10 and anisotropic with

a/b = 100. Several observations can be made from these results. First, most samples, except

for a rare few, plot below the strength for the homogeneous sample. This clearly shows that
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Figure 10: Nominal axial stress for samples of dense sand loaded under drained plane strain:
(a) all samples, (b) normalized samples.

inhomogeneities and anisotropies effectively weaken samples. Second, a somewhat surprising

result is that the anisotropy ratio tends to increase the overall strength almost everywhere

except for the orientations close to 60◦. This apparent difference could be due to the fact

that longer correlation lengths translate into regions of similar initial porosities, which im-

plies relatively more homogeneous response and hence higher strength. One can picture low

correlation lengths implying greater contrast in porosity and hence introducing higher shear

stresses. An offsetting effect occurs, however, when the samples with anisotropies have bands

of high porosity oriented in approximately the same direction as the expected failure planes

(i.e., close to 60◦), causing early occurrence of shear localization. This effect is apparent for

orientations near 60 degrees, where the a/b = 100 case is as strong as the a/b = 10 case, but

where the isotropic a/b = 1 case is the strongest of the three. All of these trends were also ob-

served in the results from the normalized samples. These results demonstrate the importance

of considering sample heterogeneities when predicting instabilities of granular media.

Remark 1. We note the similarity of these results to those observed in the laboratory and

in theoretical analyses of anisotropic rock samples. The trends observed in Figure 11 are

qualitatively identical to those reported by McLamore [30] (shown in Figure 12) from theo-
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Figure 11: Peak compressive strength for samples of dense sand loaded under plane strain
conditions.

retical considerations and compared against experimental results in triaxial compression of

anisotropic rocks ([31], page 89). This phenomenon is termed “strength anisotropy” in rock

mechanics [31]. In particular, the coincidence of the minimum strength, occurring at an ori-

entation of the principal anisotropy of 60 degrees from the horizontal (30 degrees from the

vertical), is striking.

Figures 13 and 14 show contours of shear strain and impending shear bands at the instant

of failure in normalized samples. The predicted failure plane in the homogeneous sample

compares well with the 45 + ψR/2 bound, where ψR is the dilatancy angle [32], i.e.,

sinψR =
ε̇p1 + ε̇p3
ε̇p1 − ε̇p3

(4.3)

The above estimate is attributed to Roscoe [33]. In the case of the homogeneous dense sand

sample studied here, the failure angle is approximately 54◦ for the ‘Roscoe bound’ and 55◦ from

the bifurcation theory (i.e., from the orientation of the normal vector n from the impending

shear band, see equation (4.1)). These orientations are plotted in the homogeneous sample,

where the Roscoe estimate is applicable, see Figure 13. Incidentally, the average orientation

for all samples ‘tested’ in this work is 55◦, regardless of the degree or orientation of the

28



10 20 807060504030 900

10

50

40

30

20

ANISOTROPY ANGLE FROM VERTICAL, DEG

CO
M

PR
ES

SI
VE

 S
TR

EN
GT

H
, M

Pa

Figure 12: Strength anisotropy in triaxial compression for rocks [After McLamore [30]].

anisotropies. It therefore seems as though the orientation of the failure plane is relatively

insensitive to the anisotropies, on average, even though the band orientations do fluctuate

from sample to sample, see Figures 13 and 14. On the other hand, samples with higher

anisotropy ratios do seem to display more structured failures.

Finally, a sensitivity study on the random field discretization is performed by coarsening

the initially 20 × 40 quad mesh. Two additional meshes are used with 10 × 20 and 5 × 10

quadrilateral elements. Coarser discretizations yield more ‘homogeneous’ samples, which in

turn yield higher compressive strengths as depicted in Figure 15 where the load-displacement

curves for the normalized sample with a/b = 100 and anisotropy orientation of 45◦ are re-

ported. The initial specific volume for this sample is shown in Figure 16 using a 10× 20 mesh

(cf. Figure 9d with resolution of 20 × 40 elements). As before, the resolution of all Monte

Carlo realization is set to match the finite element discretization. Because the samples share

roughly the same porosity values, the curves in Figure 15 lie on top of each other, but predict

sharply distinct strengths. The homogeneous response is also plotted for comparison.

The mesh size clearly affects the results of Figure 15, because the discretization affects

the ability of the finite element analysis to account for gradients in the random field. Ideally

the finite element size should be smaller than the smallest correlation length (defined by
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Figure 13: Shear strain contours superimposed on deformed meshes for samples with
anisotropy ratio of 10: (a) homogeneous; (b) principal axis 0◦; (c) 30◦; (d) 45◦; (e) 60◦;
(f) 90◦. Dashed lines highlight shear band orientations.
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Figure 14: Shear strain contours superimposed on deformed meshes for samples with
anisotropy ratio of 100: (a) isotropic; (b) principal axis 0◦; (c) 30◦; (d) 45◦; (e) 60◦; (f)
90◦. Dashed lines highlight shear band orientations.
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Figure 15: Comparison of force-displacement curves for normalized sample a/b = 100 and 45◦

anisotropy orientation at various levels of discretization.

parameters a and b in Equation (3.5)) in order to capture the intrinsic random field gradients.

A second effect arises because the coarse elements include some ‘local averaging’ over the grid

size [34, 35], and this causes a material homogenization that delays failure as the discretization

coarsens. Techniques have been developed to account for this local averaging in stochastic

finite element analysis, but for the localization phenomenon of interest here it appears to be

preferable to use a refined mesh to avoid these complications.

5 Conclusions

This paper presented a framework for coupling advanced elastoplastic models to reproduce

the behavior of granular materials at the meso-scale with state-of-the-art geostatistical tools.

The constitutive model utilized is capable of accounting for meso-scale inhomogeneities in the

porosity of the material. Ideally these fluctuations could be obtained using X-ray tomography

data but this is rather expensive. For this reason, a stochastic approach was chosen so that

material inhomogeneities could be systematically reproduced and their impact in the stability
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of drained and undrained samples could be analyzed.

Random fields models were utilized to characterize porosity values having a specified

probability distribution and having spatial correlation within a given specimen. The approach

used to characterize porosity values was to specify a probability distribution for porosity values

at individual locations. Spatial structure in porosity values was incorporated by simulating

spatially correlated Gaussian random fields, and then transforming these fields so that they

had the given probability distribution for porosity while retaining an appropriate underlying

correlation structure. Both isotropic and anisotropic fields were considered, and for anisotropic

fields the severity and orientation of anisotropy were varied systematically. The simulation

approach can easily incorporate experimental data that constrains the probability distribution

or spatial correlation function. In addition, the approach used for simulating the field is a

sequential one, allowing any observations at individual locations in the specimen to be specified

at the beginning of the simulation, so that porosity values at other locations are consistent

with those observations. For these reasons, combining this approach with experimental work

for calibration is a natural extension of this framework.

The simulated specimens were used as input for finite element analyses incorporating the

specified constitutive model. Results provided further confirmation that heterogeneities in

granular material have an important effect on instabilities at the meso-scale. Parametric

studies indicated that axial strength of the specimen is affected by both the degree and orien-

tation of anisotropy in porosity values, with orientation of the anisotropy having a dominant

effect, especially when this caused bands of high porosity line up with shear bands.

A total of 150 simulations were performed in this study and the effect of upscaling of

porosity fields was looked at closely. It was observed that upscaling delays the predicted onset

of localization due to local averaging over mesh elements. These results show the importance

of accounting for the meso-scale inhomogeneities and open the door to multi-scale simulations

where the effects of inhomogeneities and their interaction with shear bands can be explicitly

accounted for.
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