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Abstract

Deformation banding is a ubiquitous failure mode in geomaterials such as rocks, concrete,

and soils. It is well known that these bands of intense localized deformation can signif-

icantly reduce the load-carrying capacity of structures. Furthermore, when dealing with

fluids-saturated geomaterials, the interplay between the compaction/dilation of pores and

development of pore fluid pressures is expected to control not only the strength of the solid

matrix but also its ability to block or transport such fluids. Accurate and thorough sim-

ulation of these phenomena (i.e. deformation banding and fluid flow) is challenging, as it

requires numerical models capable of capturing micro-mechanical processes such as mineral

particle rolling and sliding in granular soils and the coupling between porosity and relative

permeability, while still maintaining a continuum mechanics framework. Until recently,

these processes could not even be observed in the laboratory. Numerical models could only

interpret material behavior as a macroscopic process and were, therefore, unable to model

the very complex behavior of saturated geomaterials accurately.

In this dissertation, we propose a numerical model capable of capturing some of the most

intricate and important features of sand behavior. Development of the model is further mo-

tivated by new advances in laboratory experimentation that allow for the observation of

key parameters associated with material strength at a scale finer than specimen scale. One

such parameter is porosity, a relative measure of the amount of voids in a soil sample. A

novel elastoplastic constitutive model based on a meso-scale description of the porosity is

proposed to simulate the behavior of the underlying sand matrix and to accurately predict

the development of deformation bands in saturated samples. ‘Meso-scale’ is defined here

as a scale smaller than specimen size but larger than particle size. The effect of meso-scale

inhomogeneities on the deformation-diffusion behavior of loose and dense sands is stud-

ied by casting the meso-scale constitutive model within a mixed nonlinear finite element

v



framework. The main findings of this work are that meso-scale imperfections (in macro-

scopically homogeneous samples) are responsible for triggering deformation bands, which

tend to strongly influence the direction and volume of fluid flow. Numerical simulations

clearly show that failure and flow modes in dense sands are sharply distinct from those in

loose sands. It is concluded that meso-scale inhomogeneities, which are inevitably present in

‘homogeneous’ samples of sand, play a crucial role in the mechanical behavior of specimens

under drained and undrained conditions at finite strains.
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Chapter 1

Introduction

1.1 Objectives and statement of the problem

The main objective of this dissertation is to develop a realistic numerical model for the

detection of deformation banding in saturated granular media. Because of the complexity

of the deformation phenomenon and its interaction with the fluid flow, it is imperative

to develop a model that realistically accounts for the effective behavior of the underlying

granular material. In particular, a constitutive model capable of including inhomogeneities

in key strength parameters at the meso-scale is needed to study the effect of such inhomo-

geneities in the stability of samples of sand. The meso-scale here refers to a scale that is

smaller than specimen size (centimeter scale), but larger than a typical grain (micrometer

scale). Thus, in a typical sample encountered in the laboratory, the meso-scale would be

the millimeter scale.

Deformation banding is a phenomenon that is observed in many solids such as metals,

concrete, rocks, and soils. It can be defined as the process by which a narrow zone of

localized deformations appears in a solid sample. When dealing with fluid-saturated samples

of soil, the process is even more complex as the deformation of the solid matrix is coupled

with the fluid flow. It is our objective here to develop a framework in which this coupling

is realistically accounted for and where the impact of the coupled mechanical behavior on

the stability and flow characteristics of saturated specimens of loose and dense sands is

adequately captured.

1



2 CHAPTER 1. INTRODUCTION

1.2 Motivation

Strain localization is a ubiquitous mode of failure in geomaterials (e.g. soils, rocks, concrete),

resulting in the loss of load-carrying capacity of the solid matrix. Furthermore, instabilities

play a crucial role in the flow characteristics of fluid-saturated porous media. It has been

shown that shear band instabilities, leading to the appearance of rock fractures in the

field, can serve as channels or barriers for hydrocarbon flow, depending on the boundary

conditions [12].

In general, instabilities can be labeled as diffuse and localized. In the case of relatively

loose sands under saturated conditions, a diffuse instability phenomenon termed ‘liquefac-

tion’ is observed both in the laboratory [13] and in the field [14]. This type of instability is

attributed to the fact that relatively loose sands tend to contract when subjected to shearing

loads and when the fluid (typically water) cannot escape fast enough, pore fluid pressures

build up and contribute to a decrease in the overall strength of the soil matrix. The effect of

soil liquefaction can be easily grasped by looking at a classical example of its catastrophic

nature. Figure 1.1 shows a picture of a group of apartment buildings that failed due to

loss of bearing capacity. The soil beneath the foundations liquefied and produced excessive

displacements at the base, ultimately leading to the collapse of otherwise structurally-intact

buildings [3].

Similarly, deformation banding is a type of localized instability that occurs both in the

laboratory and in the field as a result of a concentration of deviatoric strains in a narrow

zone within samples of relatively dense sands and, to a lesser extent, in samples of relatively

loose sands. The next chapter deals with evidence of the occurrence of deformation banding

in soils both in the laboratory and in the field, motivating our work further.

Strain localization is intimately linked to the mechanical behavior of the underlying

solid. It is well known that relative density is a state parameter that strongly influences

the mechanical behavior of sands and in particular, governs the strength characteristics of

granular materials. Porosity is directly correlated to relative density and specific volume.

New advances in laboratory experimentation make it possible to obtain a clear picture of the

porosity field across a sample of sand. These new developments have motivated our work,

which is in fact a collaborative research effort in which the initial porosity field from the

experimental side could be utilized as input for our models. X-Ray Computed Tomography

(CT) techniques, for example, can provide accurate measurements of the initial porosity
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Figure 1.1: Group of apartment buildings in Niigata, Japan after a magnitude 6.5 earth-
quake rocked the town in 1964. The buildings failed due to loss of bearing capacity when
the soil beneath liquefied (after Kramer [3]).

in the sample (see works in [4, 15, 16] for applications of CT technology to geomaterials).

Incidentally, because of the resolution of the X-Ray image, we can observe the fluctuations in

relative density at the meso-scale. The meso-scale approach has been utilized very recently

by other researchers to account for inhomogeneities in other geomaterials such as concrete

(e.g. see the works of Wriggers and Moftah [17] and Häfner et al. [18]). Nübel and Huang

[19] perturbed the void ratio field in samples of granular material within a framework

of Cosserat continuum, utilizing a hypoplastic constitutive model, and showed how these

perturbations affect the stability of drained samples of sand.

1.3 Methodology

To simulate strain localization phenomena in loose and dense saturated sands, we have

developed a mathematical model utilizing nonlinear continuum mechanics, mixture the-

ory, theoretical and computational plasticity, and the finite element method. Continuum

mechanics furnishes a mathematical framework to describe the kinematics of bodies and de-

velop balance laws governing the deformation of solids and fluids. We also obtain suitable

stress and strain measures from this framework. On the other hand, a novel constitutive
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model for sands capable of capturing the more salient features of this particulate material

was developed based on plasticity theory. The model utilizes a three-invariant yield surface,

which delimits the elastic behavior of the material while accounting for the difference in

strength between compressive and tensile behavior. Models based on plasticity theory can

capture permanent deformations typical of geomaterials (e.g. concrete, soils, rocks, etc).

The end of Chapter 2 contains a detailed discussion on the mechanical behavior of granular

media.

Inhomogeneities at the meso-scale are incorporated into the plasticity model via a state

parameter ψ, which contains information on the relative density at a point in the specimen.

If ψ < 0, the point is said to be denser than critical, whereas ψ > 0 implies a point looser

than critical. In this fashion, the macroscopic model is able to incorporate information on

relative densities that could be present in the sample at the meso-scale and that, as we will

show in the next chapters, could trigger unstable behavior at the specimen level. Further,

it is well known that the behavior of dense sands is very different from that of loose sands.

For example, dense sands tend to behave in a more ‘brittle’ fashion, reaching a distinct peak

strength, whereas loose sands do not show such a clear peak strength. Hence, any realistic

model for sands should be able to capture this difference in behavior at different relative

densities.

Finally, the aforementioned model is cast into a nonlinear finite element program to

simulate the behavior of saturated sand specimens numerically. The balance laws, obtained

from continuum mechanics and mixture theory principles, are solved in time and space using

a mixed finite element procedure. The numerical scheme is utilized to detect the onset of

strain localization in inhomogeneous samples of sand and to compare their macroscopic

behavior against that of homogeneous specimens.

1.4 Structure of presentation

The dissertation is organized in an incremental fashion, starting with the ingredients for

the elastoplastic model for sands (Chapters 3 and 4) and finishing with the problem of fluid

saturated media at finite deformation (Chapter 5). Together, these chapters tell the story

of modeling deformation banding in saturated sands utilizing a constitutive model that

captures meso-scale inhomogeneities in the porosity field and the most salient features of

sand behavior. It is our personal opinion that these ingredients make the model unique and
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allow us to obtain results that have been observed experimentally, but not yet replicated

numerically.

Chapter 2 summarizes some of the relevant background literature. The discussion

revolves around two major topics: strain localization and the mechanical behavior of sands.

Chapter 3 presents a novel constitutive model for capturing the effective or drained

behavior of granular media. This two stress-invariant plasticity model is based on the critical

state theory (CST) and introduces the state parameter ψ, which provides information on

the relative density of a specimen at the meso-scale. Finite element implementation of the

constitutive model is presented and the framework is then used to predict the location and

direction of strain localization bands on dense sand specimens exhibiting structured density

at the meso-scale.

In Chapter 4, the constitutive model for granular media is extended to account for

the third stress invariant, thereby reproducing the difference in the compressive and ex-

tensional yield strengths commonly observed in geomaterials. Numerical implementation

of the constitutive model in principal strain space yields a spectral form for the consistent

tangent operator and allows for the design and implementation of a very efficient algorithm

to search for the onset of strain localization. The numerical model is used to predict the

occurrence of deformation bands on prismatic and cylindrical specimens of dense sands

exhibiting unstructured random density at the meso-scale.

Chapter 5 deals with the modeling of deformation banding in saturated loose and dense

sands with inhomogeneous porosities at the meso-scale. The previously developed plasticity

model is used to obtain the underlying drained or effective stress response in the solid matrix.

Additionally, permeability is naturally coupled with porosity to allow for a more realistic

representation of the flow phenomenon. The formulation, based on the mixture theory,

results in a classical u − p finite element scheme, which is used to investigate the effects

of meso-scale inhomogeneities in the porosity and drainage conditions on the stability of

the specimens loaded quasi-statically. It is shown that strain localization greatly influences

flow characteristics in a sample. Additionally, it is shown that the deformation behavior

of relatively dense and loose sands is sharply distinct and that this affects the mode of

deformation banding and the pattern of fluid flow.

In conclusion, Chapter 6 will summarize the most salient contributions and findings

of this dissertation. Future lines of research related to this work will be identified and some

recommendations on how to improve the framework presented herein will be given.
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It is important to note that the core chapters of this dissertation (i.e. Chapters 3–5)

are self-contained because they have been or are in the process of being published as indi-

vidual journal articles. As a result, there will be some repetition of fundamental concepts.

Furthermore, notations were chosen to be simple and clear for each chapter rather than for

the dissertation as a whole; consequently, the notations may not be identical from chapter

to chapter. Similar to the idea of idealizing a granular medium, the reader is encouraged

to look at this dissertation as a smeared version of a system composed of discrete elements

rather than as a ‘perfect’ continuum.



Chapter 2

Background Literature

2.1 Strain localization in the lab and in the field

Deformation banding is a type of localized instability that occurs in the laboratory as a result

of a concentration of deviatoric strains in a narrow zone within samples of relatively dense

sands and, to a lesser extent, in samples of relatively loose sands. For example, Alshibli et

al. [4] reported the occurrence of strain localization in samples of dense and loose sands

under drained conditions but noted that softening became more severe as specimen density

increased. Softening was observed in all specimens that bifurcated and was attributed to

the slip mechanism developed by narrow zones of intense deformation. A typical failure

mode is shown in Figure 2.1 for a sample of medium dense Ottawa sand tested under plane

strain conditions; a well-developed planar zone with a characteristic normal vector n can

be observed.

If planar bands of intense deformation form in samples of sand under drained conditions,

can they form under undrained conditions? Can drainage impact the stability of samples of

sand? These questions were posed by Mokni and Desrues [20] who studied the occurrence

of strain localization in samples of sand under undrained conditions and subjected to plane

strain compression. They concluded that the volumetric constraint imposed by the glob-

ally undrained conditions, compounded by the fact that water is effectively incompressible,

tends to delay the occurrence of shear bands in dilative samples of sand. Localization in

samples of loose sand occurred even under undrained conditions. On the other hand, Han

and Vardoulakis [21] presented limited experimental results showing shear banding does

7
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n

Figure 2.1: Typical failure mode for plane strain specimen (after Alshibli et al. [4]).

not occur in contractive sands during displacement-controlled undrained plane strain com-

pression. Because of these apparent inconsistencies, Finno et al. [22] studied shear bands

in plane strain compression of loose sands and concluded that shear banding consistently

occurred in both drained and undrained tests on loose masonry sand.

In the field, zones of localized deformation can be directly linked to stability problems.

For instance, Finno et al. [23, 24] showed the appearance of zones where deformation was

highly localized during deep excavations in saturated Chicago clay. The largest incremental

ground-surface settlements were associated with the development of distinct shear zones.

Similarly, slope stability, which is clearly associated with modes of localized deformation,

can occur because of static or dynamic loading causing very large human and economic

losses. For example, the 7.6 magnitude Kashmir earthquake in October, 2005, triggered

tens of miles of slope failures leaving many others in precariously unstable conditions. One

such example of extensive slope instability is show in Figure 2.2, where the magnitude and

scale of the landslide can be appreciated when one notes that the meandering structure

parallel to the river in the center of the picture is actually a two-lane road.
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Figure 2.2: Extensive landsliding in Neela Dandi Mountain, north of Muzaffarabad (after
Durrani et al. [5]).

2.2 Strain localization analysis and simulation

The study of strain localization is by no means limited to experimental efforts. The first

theoretical work dealing with discontinuities is usually attributed to Hadamard who, at the

beginning of last century, came up with conditions for waves—propagating through elastic

media—to become stationary [25]. Subsequently, Hill [26], Thomas [27], and Mandel [28],

expanded Hadamard’s compatibility conditions into the elasto-plastic regime. In the mid-

seventies Rudnicki and Rice [29] published what has become one of the most influential

papers in the literature dealing with strain localization in solids. They presented neces-

sary conditions for the localization of deformation in pressure-sensitive dilatant materials.

Rudnicki and Rice’s approach consisted of investigating the necessary conditions for the

so-called loss of strong ellipticity of the elasto-plastic tangent operator (see Marsden and

Hughes [30] for a clear definition of strong ellipticity). This condition leads to the loss of

positive definiteness of the acoustic tensor. All of the above-mentioned works follow what

is now called the ‘weak discontinuity’ approach in which the solution is allowed to bifurcate

into a solution involving discontinuous deformation gradients (see Reference [31] where this

terminology is introduced).

More ‘modern’ analytical studies of strain localization in solids are directly applicable

to soils, rocks, and concrete. In the late eighties, Ortiz looked at the analytical solution

of localized failure in concrete [32]. The idea pursued by Ortiz was to look at damage
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in concrete materials as an instability arising from the inelastic behavior of the mate-

rial. Subsequent works investigating the properties of discontinuous bifurcation solutions

in associative and nonassociative elastoplastic models for the case of linear and nonlinear

kinematics are outlined in [33–39]. Extensive work has also taken place to understand a

special case of bifurcation appearing in porous rocks termed ‘compaction banding’ [40–42].

Borja and Aydin [43] developed a consistent geological and and mathematical framework

to characterize (and capture) the entire spectrum of localized deformation in tabular bands

ranging from shear deformation bands (pure shear bands, compactive/dilative shear bands)

to volumetric deformation bands (pure compaction/dilation bands).

Of particular relevance here are the works of Rudnicki [44], Larsson et al. [45], Borja

[46], and Callari and Armero [47] who derived expressions for the acoustic tensor for par-

tially saturated and saturated porous media. The expressions obtained are relevant for

either locally drained or locally undrained conditions (see Chapter 4 for a thorough dis-

cussion). Rudnicki derived an expression for the undrained acoustic tensor at finite strain

departing from the assumption that the first Piola-Kirchhoff stress can be decomposed into

effective and pore pressure stress; a straight-forward generalization from the infinitesimal

effective stress concept. Larsson et al. based their expression for the acoustic tensor, at

small strains and under undrained conditions, on the concept of regularized strong dis-

continuity. Borja studied the kinematics of multi-phase bodies in the context of partially

saturated soils at small strains and derived an expression for the undrained acoustic tensor

for partially saturated conditions. Callari and Armero followed the strong discontinuity

approach to obtain an expression for the undrained acoustic tensor at finite strains. Fol-

lowing a more physically-based approach, Vardoulakis analyzed experimental results from

undrained plane-strain compression tests on water-saturated sands and looked at the influ-

ence of pore water flow and the occurrence of shear banding under undrained conditions

[48, 49]. He concluded that no shear banding instabilities could occur in locally undrained

(homogeneous) specimens.

The theoretical developments outlined above have spurred significant research efforts in

the last couple of decades to try to capture strain localization in solids numerically. Ex-

amples of pioneering efforts in modeling strain localization using finite elements are the

works by Prevost [50], Ortiz et al. [51], and Leroy and Ortiz [52]. Unfortunately, it was

realized quite early that rate-independent plasticity models did not have a characteristic
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length and hence introduced a pathologic mesh dependence when trying to model the prop-

agation of deformation bands in elastoplastic solids. To remove this anomaly, different

researchers opted for different approaches that allowed the introduction of a length scale

emanating from the constitutive equations. Typical efforts involve the introduction of non-

local constitutive models (e.g. Bažant et al. [53]), viscoplastic regularization (e.g. Loret

and Prevost [54] and Prevost and Loret [55]), and Cosserat continuum constitutive models

(e.g. the works by Muhlhaus and Vardoulakis [56], Nübel and Huang [19], and Li and

Tang [57]). These approaches exploit the fact that granular media contain ‘natural’ length

scales such as distance between particles and particle diameter, and the fact that individual

particles are naturally amenable to micro-polar treatment.

Motivated by the lack of intrinsic length scale in rate-dependent inelastic constitutive

models, Simo and co-workers developed what we now call the ‘strong discontinuity’ approach

[31], which assumes a discontinuity in the displacement/velocity field (as opposed to the

‘weak discontinuity’ approach in which the displacement gradients are discontinuous, as

discussed above). From its very inception, the strong discontinuity approach produced

meaningful simulations of strain localization in elastoplastic solids without exhibiting mesh

dependence. Armero and Garikipati [58] extended the approach to finite deformations

within the context of the multiplicative decomposition of the deformation gradient. Larsson

and Runesson [59] and Larsson et al. [45] developed the so-called ‘regularized’ strong

discontinuity approach based on the work by Simo and co-workers. The work of Larsson

et al. [45] is of particular relevance here as they simulated strain localization in locally

undrained soils. Borja and Regueiro utilized the strong discontinuity approach to develop

finite elements capable of capturing strain localization in frictional materials [60–63]. Borja

[64] derived conditions for the onset of strain localization at finite strains and provided a link

between the localization criteria for the regularized and unregularized strong discontinuity

approaches.

2.3 Mechanical behavior and constitutive models for sands

One important aspect in the modeling of deformation response in drained and undrained

soils is the ability to capture, in a realistic fashion, the most salient features of the underlying

soil matrix. In the case of sands, there are several key features that have not been properly

addressed in the literature and that this dissertation attempts to address in detail. In
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Figure 2.3: Compression plane for typical soil sample (after Schofield and Wroth [6]).

particular, every realistic model for sands should be able to capture the following signature

phenomenological features:

• Nonlinear behavior and irreversible deformations

• Pressure dependence

• Different strength under triaxial extension and compression

• Relative density dependence

• Nonassociative plastic flow

Significant progress has been made in the formulation of phenomenological models for

soils that can capture material nonlinearities as well as irreversible deformations. These

features are clearly exposed in a one-dimensional consolidation tests such as the one depicted

in Figure 2.3. Consider a soil sample at an initial state of specific volume v and effective

pressure p′, corresponding to point A in the figure. An increase in the effective pressure p′

will compress the soil (reduce v) to point B. Now, suppose the pressure is decreased back to
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Figure 2.4: Data of yielding deduced from triaxial tests on undisturbed Winnipeg clay in
effective stress plane (after Graham et al. [7]).

the original value at point A; the sample does not return to state point A, but rather goes

to state point C, which is at the same pressure than A but at a different value of specific

volume v. The sample has suffered an irreversible volumetric deformation ∆vp. At the

same time, it is clear that the loading branch from point A to B is nonlinear, therefore the

soil is said to deform in a materially nonlinear fashion. These types of phenomenological

behavior in soils motivated the development of elastoplastic models aimed at capturing

material nonlinearities and irrecoverable deformations. Classical elastoplastic models for

soils include the Cam-Clay family of models originally proposed by Schofield and Wroth [6]

and subsequently modified by Roscoe and Burland [65]. Borja and Tamagnini [66] extended

the modified Cam-Clay model to account for the effect of geometric nonlinearities, which

had been neglected in the original model.

Figure 2.4 shows a plot of failure/yield surfaces for different values of overburden stress

for undisturbed samples of Winnipeg clay. The strength characteristics of the soil samples

are clearly affected by the overburden stress and the effective pressure. Cam-Clay models

are very effective in capturing pressure dependence in soils and the effect of the overburden

pressure. Previous plasticity models were hopeless in trying to capture these features. For

example, the von-Mises or J2 model is pressure insensitive and the Drucker-Prager model
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Figure 2.5: Yield surfaces and data obtained from Monterey sand in principal effective
stress space (after Lade and Duncan [8]).

has no way of incorporating the effect of the overburden (and other important features

such as plastic compaction). Other nonlinear plasticity models that take into account the

pressure dependence are those of Lade and Duncan [8], Nova and Wood [67], Pastor at al

[68], Pestana and Whittle [69]. The plastic potential proposed by Nova and Wood [67] is

the predecessor of the of the plastic potential proposed in this work.

The different compressive/tensile strength is a characteristic of all geomaterials. Un-

fortunately, most people still model geomaterials using J2-type models such as von-Mises

and Drucker-Prager. In fact, even the Cam-Clay models presented above do not account

for this important feature. The difference in tensile and compressive strength was demon-

strated by Lade and Duncan who plotted different yield points on a deviatoric plane for

samples of Monterey sand [8]. Figure 2.5 shows the difference in strength depending on

whether the samples are in triaxial compression (e.g. negative τ ′3) or triaxial extension

(e.g. positive τ ′3). The figure also shows how the Mohr-Coulomb yield condition is able to

capture this difference in strength. Any model with a circular projection on the deviatoric

plane is hopeless in trying to capture this key feature. Efforts in trying to account for the
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Figure 2.6: Macroscopic responses from triaxial compression in dense and loose sands. Top:
Deviartoric stress versus axial strain. Bottom: Volumetric strain versus axial strain (after
Cornforth [9]).

different behavior in triaxial extension/compression include the yield surfaces proposed by

Matsuoka and Nakai [70] and Lade and Kim [71]. Other researchers opted for modifying

the classical Cam-Clay models to account for all three stress invariants. Perić and Ayari

[72, 73] introduced the effect of Lode’s angle into the expression for the modified Cam-Clay

yield surface and thereby obtained an enhanced expression that accounts for the difference

in triaxial compression/extension for clays.

The behavior of sands is profoundly influenced by the relative density. It is well known

that relatively loose sands behave very differently than relatively dense sands [74]. For

instance, as illustrated in Figure 2.6 (top), if one plots the deviatoric response in dense and

loose sands under otherwise identical triaxial compression, one finds that the dense sand

tends to peak in a more distinct way than loose sands. Similarly, dense sands tend to dilate

when sheared, whereas loose sands then to contract. This phenomenon is also observed in

Figure 2.6 (bottom). The ability of a model to capture this feature is crucial when modeling
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the different responses of sands at various densities, and it becomes even more important

when sands are saturated and not allowed to drain. The Introduction sections in Chapters

2-4 shed more light on the importance of capturing relative density realistically. Very few

models of sand account explicitly for relative density in the sense that they can capture the

different compactive/dilative feature explained above. Some of the most notable examples

of models that do account for relative density are those of Jefferies [2], Manzari and Dafalias

[75], Pestana and Whittle [69], and Khalili et al. [76].

Finally, from a phenomenological stand point, it has been shown that sands (and many

geomaterials in general) display nonassociativity of plastic flow. This means that the di-

rection of plastic strain rate is not defined by the normal to the yield surface and hence

suggests the existence of the so-called plastic potential surface, whose normal does define

the direction of the plastic strain rates. This feature has been observed in the laboratory

and reported by Poorooshasb et al. [10, 11], who, based on experimental evidence, proposed

a model where the plastic potential surface differs from the yield surface. Figure 2.7 shows

the model proposed based on test results for dense Ottawa sand. Also, from a theoretical

stand point, Nova [77] showed that thermodynamic implications require geomaterials in

general to display nonassociativity. However, experimental evidence in sands suggests that,

whereas volumetric nonassociativity is clearly pronounced, deviatoric nonassociativity in

sands is not as important. This was reported by Lade and Duncan [8] who showed that the

direction of plastic flow rates on the deviatoric plane are roughly parallel to the normal to

the yield surface on that plane.
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Chapter 3

Critical state plasticity, Part VI:

Meso-scale finite element

simulation of strain localization in

discrete granular materials

This Chapter is published in: R. I. Borja and J. E. Andrade. Critical state plasticity,

Part VI: Meso-scale finite element simulation of strain localization in discrete granular

materials. Computer Methods in Applied Mechanics and Engineering, 2006. In press for

the John Argyris Memorial Special Issue.

Abstract

Development of accurate mathematical models of discrete granular material behavior re-

quires a fundamental understanding of deformation and strain localization phenomena.

This paper utilizes a meso-scale finite element modeling approach to obtain an accurate

and thorough capture of deformation and strain localization processes in discrete granular

materials such as sands. We employ critical state theory and implement an elastoplastic

constitutive model for granular materials, a variant of a model called “Nor-Sand,” allowing

for non-associative plastic flow and formulating it in the finite deformation regime. Unlike

the previous versions of critical state plasticity models presented in a series of “Cam-Clay”

19
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papers, the present model contains an additional state parameter ψ that allows for a devia-

tion or detachment of the yield surface from the critical state line. Depending on the sign of

this state parameter, the model can reproduce plastic compaction as well as plastic dilation

in either loose or dense granular materials. Through numerical examples we demonstrate

how a structured spatial density variation affects the predicted strain localization patterns

in dense sand specimens.

3.1 Introduction

Development of accurate mathematical models of discrete granular material behavior re-

quires a fundamental understanding of the localization phenomena, such as the formation

of shear bands in dense sands. For this reason, much experimental work has been conducted

to gain a better understanding of the localization process in these materials [4, 15, 78–86].

The subject also has spurred considerable interest in the theoretical and computational

modeling fields [19, 87–103]. It is important to recognize that the material response ob-

served in the laboratory is a result of many different micro-mechanical processes, such as

mineral particle rolling and sliding in granular soils, micro-cracking in brittle rocks, and

mineral particle rotation and translation in the cement matrix of soft rocks. Ideally, any

localization model for geomaterials must represent all of these processes. However, current

limitations of experimental and mathematical modeling techniques in capturing the evo-

lution in the micro-scale throughout testing have inhibited the use of a micro-mechanical

description of the localized deformation behavior.

To circumvent the problems associated with the micro-mechanical modeling approach, a

macro-mechanical approach is often used. For soils, this approach pertains to the specimen

being considered as a macro-scale element from which the material response may be inferred.

The underlying assumption is that the specimen is prepared uniformly and deformed homo-

geneously enough to allow extraction of the material response from the specimen response.

However, it is well known that each specimen is unique, and that two identically prepared

samples could exhibit different mechanical responses in the regime of instability even if they

had been subjected to the same initially homogeneous deformation field. This implies that

the size of a specimen is too large to accurately resolve the macro-scale field, and that it

can only capture the strain localization phenomena in a very approximate way.
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Figure 3.1: Cross-section through a biaxial specimen of silica sand analyzed by X-ray com-
puted tomography; white spot is a piece of gravel.

In this paper, we adopt a more refined approach to investigating strain localization phe-

nomena based on a meso-scale description of the granular material behavior. As a matter of

terminology, the term “meso-scale” is used in this paper to refer to a scale larger than the

grain scale (particle-scale) but smaller than the element, or specimen, scale (macro-scale).

This approach is motivated primarily by the current advances in laboratory testing capabil-

ities that allow accurate measurements of material imperfection in the specimens, such as

X-ray Computed Tomography (CT) and Digital Image Processing (DIP) in granular soils

[15, 78, 83, 84, 103]. For example, Figure 3.1 shows the result of a CT scan on a biaxial

specimen of pure silica sand having a mean grain diameter of 0.5 mm and prepared via

air pluviation. The gray level variations in the image indicate differences in the meso-scale

local density, with lighter colors indicating regions of higher density (the large white spot in

the lower level of the specimen is a piece of gravel). This advanced technology in laboratory

testing, combined with DIP to quantitatively transfer the CT results as input into a nu-

merical model, enhances an accurate meso-scale description of granular material behavior

and motivates the development of robust meso-scale modeling approaches for replicating

the shear banding processes in discrete granular materials.

The modeling approach pursued in this paper utilizes nonlinear continuum mechanics

and the finite element method, in combination with a constitutive model based on critical

state plasticity that captures both hardening and softening responses depending on the
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state of the material at yield. The first plasticity model exhibiting such features that comes

to mind is the classical modified Cam-Clay [6, 65, 66, 72, 73, 98, 104, 105]. However, this

model may not be robust enough to reproduce the shear banding processes, particularly in

sands, since it was originally developed to reproduce the hardening response of soils on the

“wet” side of the critical state line, and not the dilative response on the “dry” side where

this model poorly replicates the softening behavior necessary to trigger strain localization.

To model the strain localization process more accurately, we use an alternative critical state

formulation that contains an additional constitutive variable, namely, the state parameter

ψ [2, 75, 106]. This parameter determines whether the state point lies below or above the

critical state line, as well as enables a complete “detachment” of the yield surface from

this line. By “detachment” we mean that the initial position of the critical state line and

the state of stress alone do not determine the density of the material. Instead, one needs

to specify the spatial variation of void ratio (or specific volume) in addition to the state

parameters required by the classical Cam-Clay models. Through the state parameter ψ we

can now prescribe quantitatively any measured specimen imperfection in the form of initial

spatial density variation.

Specifically, we use classical plasticity theory along with a variant of “Nor-Sand” model

proposed by Jefferies [2] to describe the constitutive law at the meso-scale level. The main

difference between this and the classical Cam-Clay model lies in the description of the

evolution of the plastic modulus. In classical Cam-Clay model the character of the plastic

modulus depends on the sign of the plastic volumetric strain increment (determined from

the flow rule), i.e., it is positive under compaction (hardening), negative under dilation

(softening), and is zero at critical state (perfect plasticity). In sandy soils this may not

be an accurate representation of hardening/softening responses since a dense sand could

exhibit an initially contractive behavior, followed by a dilative behavior, when sheared.

This important feature, called phase transformation in the literature [3, 107], cannot be

reproduced by classical Cam-Clay models. In the present formulation the growth or collapse

of the yield surface is determined by the deviatoric component of the plastic strain increment

and by the position of the stress point relative to a so-called limit hardening dilatancy.

Such description reproduces more accurately the softening response on the “dry” side of

the critical state line.

The theoretical and computational aspects of this paper include the mathematical anal-

yses of the thermodynamics of constitutive models characterized by elastoplastic coupling
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[108, 109]. We also describe the numerical implementation of the finite deformation version

of the model, the impact of B-bar integration near the critical state, and the localization of

deformation on the “dry” side of the critical state line. We present two numerical examples

demonstrating the localization of deformation in plane strain and full 3D loading conditions,

highlighting in both cases the important role that the spatial density variation plays on the

mechanical responses of dense granular materials.

Notations and symbols used in this paper are as follows: bold-faced letters denote tensors

and vectors; the symbol ‘·’ denotes an inner product of two vectors (e.g. a · b = aibi), or

a single contraction of adjacent indices of two tensors (e.g. c · d = cijdjk); the symbol

‘:’ denotes an inner product of two second-order tensors (e.g. c : d = cijdij), or a double

contraction of adjacent indices of tensors of rank two and higher (e.g. C : ǫe = Cijklǫ
e
kl); the

symbol ‘⊗’ denotes a juxtaposition, e.g., (a⊗b)ij = aibj . Finally, for any symmetric second

order tensors α and β,(α ⊗ β)ijkl = αijβkl, (α ⊕ β)ijkl = αjlβik, and (α ⊖ β)ijkl = αilβjk.

3.2 Formulation of the infinitesimal model

We begin by presenting the general features of the meso-scale constitutive model in the

infinitesimal regime. Extension of the features to the finite deformation regime is then

presented in the next section.

3.2.1 Hyperelastic response

We consider a stored energy density function Ψ e(ǫe) in a granular assembly taken as a

continuum; the macroscopic stress σ is given by

σ =
∂Ψ e

∂ǫe
(3.2.1)

where

Ψ e = Ψ̃ e(ǫev) +



µeǫe 2

s (3.2.2)

and

Ψ̃(ǫev) = −p0κ̃ exp ω , ω = −ǫ
e
v − ǫev0

κ̃
, µe = µ0 +

α0

κ̃
Ψ̃(ǫev). (3.2.3)
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The independent variables are the infinitesimal macroscopic volumetric and deviatoric strain

invariants

ǫev = tr(ǫe) , ǫes =

√
2

3
‖ee‖ , ee = ǫe − 1

3
ǫev1, (3.2.4)

where ǫe is the elastic component of the infinitesimal macroscopic strain tensor. The ma-

terial parameters required for definition are the reference strain ǫev0 and reference pressure

p0 of the elastic compression curve, as well as the elastic compressibility index κ̃. The

above model produces pressure-dependent elastic bulk and shear moduli, in accord with

a well-known soil behavioral feature. Equation (3.2.3) results in a constant elastic shear

modulusµe = µ0 when α0 = 0. This model is conservative in the sense that no energy is

generated or lost in a closed elastic loading loop [1].

3.2.2 Yield surface, plastic potential function, and flow rule

We consider the first two stress invariants

p =
1

3
trσ, q =

√
3

2
‖s‖, s = σ − p1, (3.2.5)

where p ≤ 0 in general. We define a yield function F of the form

F = q + ηp, (3.2.6)

where

η =





M [1 + ln (pi/p)] if N = 0;

M/N
[
1 − (1 −N) (p/pi)

N/(1−N)
]

if N > 0.
(3.2.7)

Here, pi < 0 is called the “image stress” representing the size of the yield surface, defined

such that the stress ratio η = −q/p = M when p = pi. A closed-form expression for pi is

pi

p
=

{
exp(η/M − 1) if N = 0;

[(1 −N)/(1 − ηN/M)] if N > 0.
(3.2.8)

The parameter N ≥ 0 determines the curvature of the yield surface on the hydrostatic

axis and typically has a value less than 0.4 for sands [2]; as N increases, the curvature

increases. Figure 3.2 shows yield surfaces for different values of N . For comparison, a plot

of the conventional elliptical yield surface used in modified Cam-Clay plasticity theory is
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Figure 3.2: Comparison of shapes of critical state yield surfaces.

also shown [65].

Next we consider a plastic potential function of the form

Q = q + ηp, (3.2.9)

where

η =





M [1 + ln(pi/p)] if N = 0;

(M/N)
[
1 − (1 −N)(p/pi)

N/(1−N)
]

if N > 0.
(3.2.10)

The plastic flow is associative if N = N and pi = pi, and non-associative otherwise. For

the latter case, we assume that N ≤ N resulting in a plastic potential function that is

‘flatter’ than the yield surface (if N < N), as shown in Figure 3.3. This effectively yields a

smaller dilatancy angle than is predicted by the assumption of associative normality, similar

in idea to the thermodynamic restriction that the dilatancy angle must be at most equal to

the friction angle in Mohr-Coulomb or Drucker-Prager materials, see [110, 111] for further

elaboration.

The variable pi is a free parameter that determines the final size of the plastic potential

function. If we set Q = 0 whenever the stress point (p, q) lies on the yield surface, then pi

can be determined as

pi

p
=





exp(η/M − 1) if N = 0;
[
(1 −N)/(1 − ηN/M)

](1−N)/N
if N > 0.

(3.2.11)
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Figure 3.3: Yield function and family of plastic potential surfaces.

The flow rule then writes

ǫ̇p = λ̇q, q :=
∂Q

∂σ
, (3.2.12)

where λ̇ ≥ 0 is a nonegative plastic multiplier, and

q =
∂q

∂σ
+ η

∂p

∂σ
+ p

∂η

∂σ
= −1

3

(
M − η

1 −N

)
1 +

√
3

2

s

‖s‖ , N ≥ 0. (3.2.13)

In this case, the variable pi does not have to enter into the formulation since η can be

determined directly from the relation η = η.

The first two invariants of ǫ̇p are

ǫ̇pv = tr ǫ̇p = −λ̇
(
M − η

1 −N

)
, ǫ̇ps =

√
2

3
‖ėp‖ = λ̇, ėp = ǫ̇p − 1

3
ǫ̇pv1. (3.2.14)

where N ≥ 0. Note that ǫ̇pv > 0 (dilation) whenever η > M , and ǫ̇pv < 0 (compaction)

whenever η < M . Plastic flow is purely isochoric when ǫ̇pv = 0, which occurs when η = M .

Furthermore, note that

f :=
∂F

∂σ
=
∂q

∂σ
+ η

∂p

∂σ
+ p

∂η

∂σ
= −1

3

(
M − η

1 −N

)
1 +

√
3

2

s

‖s‖ , N ≥ 0, (3.2.15)

Since trf = 0 whenever η = M , then plastic flow is always associative at this stress state

regardless of the values of N and N . Non-associative plastic flow is possible only in the

volumetric sense for this two-invariant model.
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For perfect plasticity the reduced dissipation inequality requires the stresses to perform

nonnegative plastic incremental work [112], i.e.,

Dp = σ : ǫ̇p = λ̇σ : q ≥ 0. (3.2.16)

Using the stress tensor decomposition σ = s + p1 and substituting relation (3.2.13) into

(3.2.16), we obtain

Dp = −λ̇
(
η +

M − η

1 −N

)
p ≥ 0 =⇒ η +

M − η

1 −N
≥ 0 (3.2.17)

since p ≤ 0. Now, if the stress point is on the yield surface then (3.2.7) determines the

stress ratio η, and (3.2.17) thus becomes

−MN

N

[
1 − (1 −N)

(
p

pi

)N/(1−N)
]

+M ≥ 0. (3.2.18)

However, M > 0 since this is a physical parameter, and so we get

N ≤ N

[
1 − (1 −N)

(
p

pi

)N/(1−N)
]−1

. (3.2.19)

The expression inside the pair of brackets is equal to unity at the stress space origin when

p = 0, reduces to N at the image stress point when η = M and p = pi, and is zero on the

hydrostatic axis when η = 0 and p = pi/(1 − N)(1−N)/N . The corresponding inverses are

equal to unity, 1/N > 1, and positive infinity, respectively. Hence, for (3.2.19) to remain

true at all times, we must have

N ≤ N , (3.2.20)

as postulated earlier.

3.2.3 State parameter and plastic dilatancy

In classical Cam-Clay models the image stress pi coincides with a point on the critical state

line (CSL), a locus of points characterized by isochoric plastic flow in the space defined by

the stress invariants p and q and by the specific volume v. The CSL is given by the pair of
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equations

qc = −Mpc, vc = vc0 − λ̃ ln(−pc), (3.2.21)

where subscript “c” denotes that the point (vc, pc, qc) is on the CSL. The parameters are

the compressibility index λ̃ and the reference specific volume vc0. Thus, any given point on

the yield surface has an associated specific volume, and isochoric plastic flow can only take

place on the CSL.

To apply the model to sands, which exhibit different types of volumetric yielding de-

pending on initial density, the yield surface is detached from the critical state line along

the v-axis. Thus, the state point (v, p, q) may now lie either above or below the critical

specific volume vc at the same stress p depending on whether the sand is looser or denser

than critical. Following the notations of [2], a state parameter ψ is introduced to denote

the relative distance along the v-axis of the current state point to a point vc on the CSL at

the same p,

ψ = v − vc. (3.2.22)

Further, a state parameter ψi is introduced denoting the distance of the same current state

point to vc,i on the CSL at p = pi,

ψi = v − vc,i, vc,i = vc0 − λ̃ ln(−pi), (3.2.23)

where vc,i is the value of vc at the stress pi, and vc0 is the reference value of vc when pi = 1,

see (3.2.21). The relation between ψ and ψi is (see Figure 3.4)

ψi = ψ + λ̃ ln

(
pi

p

)
. (3.2.24)

Hence, ψ is negative below the CSL and positive above it. An upshot of disconnecting the

yield surface from the CSL is that it is no longer possible to locate a state point on the

yield surface by prescribing p and q alone; one also needs to specify the state parameter

ψ to completely describe the state of a point. Furthermore, isochoric plastic flow does not

anymore occur only on the CSL but could also take place at the image stress point. Finally,

the parameter ψi dictates the amount of plastic dilatancy in the case of dense sands.

Formally, plastic dilatancy is defined by the expression

D := ǫ̇pv/ǫ̇
p
s =

η −M

1 −N
. (3.2.25)
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Figure 3.4: Geometric representation of state parameter ψ.

This definition is valid for all possible values of η, even for η = 0 where Q is not a smooth

function. However, experimental evidence on a variety of sands suggests that there exists

a maximum possible plastic dilatancy, D∗, which limits a plastic hardening response. The

value of D∗ depends on the state parameter ψi, increasing in value as the state point lies

farther and farther away from the CSL on the dense side. An empirical correlation has been

established experimentally in [2] between the plastic dilatancy D∗ and the state parameter

ψi, and takes the form

D∗ = αψi, (3.2.26)

where α ≈ −3.5 typically for most sands. The corresponding value of stress ratio at this

limit hardening dilatancy is

η∗ = M +D∗(1 −N) = M + αψi(1 −N) = M + αψi(1 −N), (3.2.27)

and the corresponding size of the yield surface is

p∗i
p

=

{
exp(αψi/M) if N = N = 0;

(1 − αψiN/M)(N−1)/N if 0 ≤ N ≤ N 6= 0,
(3.2.28)

where

αβ = α, β =
1 −N

1 −N
. (3.2.29)
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In the above expression we have introduced a non-associativity parameter β ≤ 1, where

β = 1 in the associative case.

3.2.4 Consistency condition and hardening law

For elastoplastic response the standard consistency condition on the yield function F reads

Ḟ = f : σ̇ −Hλ̇ = 0 , λ̇ > 0, (3.2.30)

where H is the plastic modulus given by the equation

H = − 1

λ̇

∂F

∂pi
ṗi = − 1

λ̇

(
p

pi

)1/(1−N)

Mṗi. (3.2.31)

Since p/pi > 0, the sign of the plastic modulus depends on the sign of ṗi: H > 0 if ṗi < 0

(hardening), H < 0 if ṗi > 0 (softening), and H = 0 if ṗi = 0 (perfect plasticity).

In classical Cam-Clay theory the sign of H depends on the sign of ǫ̇pv, i.e., H is positive

for compaction and negative for expansion. However, as noted above, this simple criterion

does not adequately capture the hardening/softening responses of sands, which are shown

to be dependent on the limit hardening plastic dilatancy D∗, i.e., H is positive if D < D∗

and negative if D > D∗. Thus, any postulated hardening law must satisfy the obvious

relationship

sgnH = sgn(−ṗi) = sgn(D∗ −D) = sgn(η∗ − η) = sgn(pi − p∗i ), (3.2.32)

where ‘sgn’ is the sign operator. Furthermore, in terms of the cumulative plastic shear

strain

ǫps =

∫

t
ǫ̇ps dt, (3.2.33)

we require that

lim
ǫps →∞

H = lim
ǫps →∞

(−ṗi) = lim
ǫps →∞

(D∗ −D) = lim
ǫps →∞

(η∗ − η) = lim
ǫps →∞

(pi − p∗i ) = 0. (3.2.34)

Thus, any postulated hardening law must reflect a condition of perfect plasticity as the

plastic shear strain becomes very large. Note that the above restriction is stronger, e.g.,
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than the weaker condition D∗ − D = 0, without the limit, which could occur even if the

stress and image points do not coincide. The limiting condition ǫps → ∞ insures that the

stress and image points approach the CSL, and that these two points coincide in the limit.

A general evolution for −ṗi satisfying the requirements stated above may be given by

an equation of the form

−ṗi = f(pi − p∗i )ǫ̇
p
s = f(pi − p∗i )λ̇, (3.2.35)

where f is a simple odd scalar function of its argument, i.e., f(−x) = −f(x) and sgn f =

sgnx. (Alternately, one can use either D or η in the argument for f). In this case, the

expression for the plastic modulus becomes

H = M

(
p

pi

)1/(1−N)

f(pi − p∗i ). (3.2.36)

Taking f(x) = hx, where h is a positive dimensionless constant, we arrive at a phenomeno-

logical expression of the form similar to that presented in [2],

f(pi − p∗i ) = h(pi − p∗i ). (3.2.37)

This results in a plastic modulus given by the equation

H = Mh

(
p

pi

)1/(1−N)

(pi − p∗i ). (3.2.38)

To summarize, the transition point between hardening and softening responses is repre-

sented by the limit hardening dilatancy D∗, which approaches zero on the CSL.

3.2.5 Implications to entropy production

Consider the Helmholtz free energy function Ψ = Ψ(ǫe, ǫps ). For now, we avoid making the

usual additive decomposition of the free energy into Ψ = Ψ e(ǫe) + Ψp(ǫps ); in fact, we shall

demonstrate that such decomposition is not possible in the present model. Ignoring the

non-mechanical powers, the local Clausius-Duhem inequality yields

σ : ǫ̇ − dΨ

dt
≥ 0. (3.2.39)
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Applying the chain rule for dΨ/dt and invoking the standard Coleman relations results in

the constitutive relation

σ =
∂Ψ(ǫe, ǫps )

∂ǫe
, (3.2.40)

plus the reduced dissipation inequality

σ : ǫ̇p − piǫ̇
p
s ≥ 0 , pi =

∂Ψ(ǫe, ǫps )

∂ǫps
. (3.2.41)

Here, we have chosen pi to be the stress-like plastic internal variable conjugate to ǫps . With

an appropriate set of material parameters we have ensured before that σ : ǫ̇p ≥ 0 (see

Sec. 3.2.2). Since ǫ̇ps = λ̇ ≥ 0 and pi < 0, the reduced dissipation inequality as written

above holds provided that
∂Ψ(ǫe, ǫps )

∂ǫps
≤ 0. (3.2.42)

Now, consider the evolution for pi as postulated in (3.2.35). Integrating in time yields

∂Ψ(ǫe, ǫps )

∂ǫps
≡ pi = pi0 −

∫ ǫps

ǫps0

f(pi − p∗i ) dǫps , (3.2.43)

where pi0 is the reference value of pi when ǫps = ǫps0. Recalling that f is a simple odd function,

the right-hand side of the above equation is negative provided that sgn(pi − p∗i ) = sgnH =

positive. This implies that the reduced dissipation inequality is identically satisfied in the

hardening regime.

Integrating once more gives a more definitive form of the Helmholtz free energy,

Ψ(ǫe, ǫps ) =

∫ ǫps

ǫps0

pi0 dǫps −
∫ ǫps

ǫps0

∫ ǫps

ǫps0

f(pi − p∗i ) dǫps dǫ
p
s + Ψ e(ǫe) + Ψ0, (3.2.44)

where Ψ e(ǫe) is the usual elastic stored energy function. The first two integrals represent

the plastic component of the free energy,

Ψp = Ψp(ǫe, ǫps ) =

∫ ǫps

ǫps0

pi0 dǫps −
∫ ǫps

ǫps0

∫ ǫps

ǫps0

f(pi − p∗i ) dǫps dǫ
p
s . (3.2.45)

Note in this case that Ψp depends not only on ǫps but also on ǫe through the variable p∗i .
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The Cauchy stress tensor then becomes

σ =
∂Ψ e(ǫe)

∂ǫe
+

∫ ǫps

ǫps0

∫ ǫps

ǫps0

f ′(pi − p∗i )
∂p∗i
∂ǫe

dǫps dǫ
p
s

︸ ︷︷ ︸
O(∆ǫp 2

s )

, (3.2.46)

where ∆ǫps = ǫps − ǫps0, and

∂p∗i
∂ǫe

= (1 −N)
αp∗i /M

1 − αψiN/M

∂ψi

∂ǫe
+
p∗i
p

∂p

∂ǫe
, N ≥ 0. (3.2.47)

Strictly, then, the Cauchy stress tensor depends not only on ǫe but also on ǫps . Attempts

have been made in the past to capture this dependence of σ on ǫps ; for example, a nonlinear

elasticity model in which the elastic shear modulus varies with a stress-like plastic internal

variable similar to pi has been proposed in [109, 113]. However, these developments have

not gained much acceptance in the literature due, primarily, to the lack of experimental

data and to the difficulty with obtaining such test data.

It must be noted that the observed dependence of Ψp on the elastic strain ǫe occurs

only prior to reaching the critical state where ∆ǫps remains “relatively small,” and thus,

the second-order term in (3.2.46) may be ignored (such as done in Sec. 3.2.1). Most of the

intense shearing (i.e., large ∆ǫps ) in fact occurs at the critical state where f(pi − p∗i ) = 0, at

which condition the additive decomposition of the free energy into Ψ e(ǫe) and Ψp(ǫps ) holds,

see (3.2.44).

3.2.6 Numerical implementation

Even though the plastic internal variable pi depends on the state parameter ψi, and that

this variable is deeply embedded in the plastic modulus H, the model is still amenable to

fully implicit numerical integration. Table 3.1 summarizes the relevant rate equations used

in the constitutive theory. Table 3.2 summarizes the algorithmic counterpart utilizing the

classical return mapping scheme. For improved efficiency, the return mapping algorithm

in Table 3.2 is performed in the strain invariant space, as demonstrated below, leading to

a system of nonlinear equations with three unknowns. As usual, it is assumed that ∆ǫ is

given, which implies that both the elastic trial strain ǫe tr and the total strain ǫ are known.

Note that v0 is the initial value of the specific volume at the beginning of the calculations

when ǫ = 0, and should not be confused with vc0. As usual, the main goal is to find the
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Table 3.1: Summary of rate equations for plasticity model for sands, infinitesimal deforma-
tion version.

1. Strain rates: ǫ̇ = ǫ̇e + ǫ̇p

2. Hyperelastic rate equations: σ̇ = ce : ǫ̇e; ce = ∂2Ψ e/∂ǫe∂ǫe

3. Flow rule: ǫ̇p = λ̇q

4. State parameter: ψ̇i = v̇ + λ̃ṗi/pi from (3.2.23)

5. Hardening law: −ṗi = f(pi − p∗i )λ̇ from (3.2.35)

6. Consistency condition: f : σ̇ −Hλ̇ = 0

7. Kuhn-Tucker conditions: λ̇ ≥ 0, F ≤ 0, λ̇F = 0

final stresses σ and the discrete plastic multiplier ∆λ for a given strain increment ∆ǫ.

Following [66, 111], consider the following local residual equations generated by the applied

strain increment ∆ǫ

r = r(x) =





ǫev − ǫe tr
v + ∆λβ∂pF

ǫes − ǫe tr
s + ∆λ∂qF

F





; x =





ǫev

ǫes

∆λ





(3.2.48)

where β is the non-associativity parameter defined in (3.2.29). The goal is to dissipate the

residual vector r by finding the solution vector x∗ using a local Newton iteration.

In developing the local Jacobian matrix r′(x) used for Newton iteration, it is convenient

to define the following mapping induced by the numerical algorithm

y =





p

q

pi





=





p(ǫev, ǫ
e
s)

q(ǫev, ǫ
e
s)

pi(ǫ
e
v, ǫ

e
s ,∆λ)





=⇒ y = y(x) (3.2.49)

The tangent y′(x) = D defines the slope, given by

D =




D11 D12 D13

D21 D22 D23

D31 D32 D33


 =




∂ǫevp ∂ǫesp 0

∂ǫevq ∂ǫesq 0

∂ǫevpi ∂ǫespi ∂∆λpi


 . (3.2.50)
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Table 3.2: Return mapping algorithm for plasticity model for sands, infinitesimal deforma-
tion version.

1. Elastic strain predictor: ǫe tr = ǫe
n + ∆ǫ

2. Elastic stress predictor: σtr = ∂Ψ e/∂ǫe tr ; ptr
i = pi,n

3. Check if yielding: F
(
σtr, ptr

i

)
≥ 0?

No, set ǫe = ǫe tr; σ = σtr; pi = ptr
i and exit

4. Yes, initialize ∆λ = 0 and iterate for ∆λ (steps 5–7)

5. Plastic corrector: ǫe = ǫe tr − ∆λq, σ = ∂Ψ e/∂ǫe

6. Update plastic internal variable pi:

(a) Cumulative strain: ǫ = ǫn + ∆ǫ

(b) Specific volume: v = v0(1 + tr ǫ)

(c) Initialize pi = pi,n and iterate for pi (steps 6d-f)

(d) State parameter: ψi = v − vc0 + λ̃ ln(−pi)

(e) Limit hardening plastic variable:

p∗i = p×
{

exp (αψi/M) if N = N = 0,

(1 − αψiN/M)(N−1)/N if 0 ≤ N ≤ N 6= 0.

(f) Plastic internal variable: pi = pi,n − f(pi − p∗i )∆λ

7. Discrete consistency condition: F (p, q, pi) = 0
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The hyperelastic equations take the following form independent of the discrete plastic mul-

tiplier ∆λ (and hence, D13 = D23 = 0)

p = p0 exp ω

[
1 +

3α0

2κ̃
ǫe 2
s

]
, q = 3(µ0 − α0p0 expω)ǫes . (3.2.51)

Thus,

D11 = −p0

κ̃
exp ω

[
1 +

3α0

2κ̃
ǫe 2
s

]
,

D22 = 3µ0 − 3α0p0 exp ω,

D12 = D21 =
3p0α0ǫ

e
s

κ̃
exp ω. (3.2.52)

We recall that D21 = D12 from the postulated existence of an elastic stored energy function

Ψ e.

The plastic internal variable pi is deeply embedded in the evolution equations and is

best calculated iteratively, as shown in Table 3.2. First, from Step No. 6(f), we construct a

scalar residual equation

r(pi) = pi − pi,n + f(pi − p∗i )∆λ, (3.2.53)

where p∗i is calculated in succession from Step No. 6(e,d) of Table 3.2 using the current

estimate for pi. Using a sub-local Newton iteration, we determine the root that dissipates

this residual iteratively. The sub-local scalar tangent operator takes the simple form

r′(pi) = 1 + f ′(pi − p∗i )∆λ

[
1 − λ̃α(1 −N)

M − αψiN

(
p∗i
pi

)]
, N ≥ 0. (3.2.54)

Having determined the converged value of pi, we can then calculate the corresponding values

of ψi and p∗i and proceed with the following differentiation.

From Table 3.2, Step No. 6(f), we obtain the variation

∂pi

∂ǫev
= −f ′(pi − p∗i )∆λ

(
∂pi

∂ǫev
− ∂p∗i
∂ǫev

)
. (3.2.55)

From Step No. 6(e), we get

∂p∗i
∂ǫev

=

(
αp∗i

1 −N

M − αψiN

)
∂ψi

∂ǫev
+
p∗i
p
D11, N ≥ 0. (3.2.56)
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From Step No. 6(d), we obtain

∂ψi

∂ǫev
=
λ̃

pi

∂pi

∂ǫev
. (3.2.57)

Combining these last three equations gives

D31 =
∂pi

∂ǫev
= c−1f ′(pi − p∗i )∆λ

(
p∗i
p

)
D11;

c = 1 + f ′(pi − p∗i )∆λ

[
1 − λ̃α(1 −N)

M − αψiN

(
p∗i
pi

)]
. (3.2.58)

Note that c is the converged value of r′(pi) when r = 0, cf. (3.2.54). Following a similar

procedure, we obtain

D32 =
∂pi

∂ǫes
= c−1f ′(pi − p∗i )∆λ

(
p∗i
p

)
D12. (3.2.59)

Again, using the same implicit differentiation, we get

D33 =
∂pi

∂∆λ
= −c−1f(pi − p∗i ). (3.2.60)

For the hardening law adopted in [2], f ′(pi − p∗i ) reduces to the constant h.

It is also convenient to define the following vector operator

H =
[
H1 H2 H3

]
=
[
∂2
pp ∂2

pq ∂2
ppi

]
F . (3.2.61)

For the yield function at hand, the elements of H are as follows. First, we obtain the first

derivatives

∂F

∂p
=

{
M ln(pi/p) if N = 0,

(M/N)[1 − (p/pi)
N/(1−N)] if N > 0,

∂F

∂q
= 1,

∂F

∂pi
= M

(
p

pi

)1/(1−N)

, N ≥ 0. (3.2.62)

Then, for N ≥ 0, we have

H1 = − 1

1 −N

M

p

(
p

pi

)N/(1−N)

, H2 = 0, H3 =
1

1 −N

M

p

(
p

pi

)1/(1−N)

. (3.2.63)
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Finally, from the product formula induced by the chain rule, we define the vector operator

G,

G = HD =
[
G1 G2 G3

]
. (3.2.64)

The algorithmic local tangent operator for Newton iteration is then given by

r′(x) = (3.2.65)


1 + ∆λβG1 ∆λβG2 β(∂pF + ∆λG3)

0 1 ∂qF

(D11∂p +D21∂q +D31∂pi)F (D12∂p +D22∂q +D32∂pi)F D33∂piF


 .

Remark 1. The numerical algorithm described above entails two levels of nested Newton

iterations to determine the local unknowns. An alternative approach would be to consider

pi as a fourth local unknown, along with ǫev, ǫ
e
s and ∆λ, and solve them all iteratively in

one single Newton loop. We have found that either approach works well for the problem at

hand, and that either one demonstrates about the same computational efficiency.

3.2.7 Algorithmic tangent operator

The algorithmic tangent operator c = ∂σ/∂ǫe tr ≡ ∂σ/∂ǫ is used for the global Newton

iteration of the finite element problem. It has been shown in [43, 114] that it can also be

used in lieu of the theoretically correct elastoplastic constitutive operator cep for detecting

the onset of material instability, provided the step size is ‘small.’ To derive the algorithmic

tangent operator, consider the following expression for the Cauchy stress tensor

σ = p1 +

√
2

3
qn̂, (3.2.66)

where n̂ = s/‖s‖ = ee/‖ee‖ = ee tr/‖ee tr‖ from the co-axiality of the principal directions.

The chain rule then yields (see [66])

c =
∂σ

∂ǫ
= 1 ⊗

(
D11

∂ǫev
∂ǫ

+D12
∂ǫes
∂ǫ

)
+

√
2

3
n̂ ⊗

(
D21

∂ǫev
∂ǫ

+D22
∂ǫes
∂ǫ

)

+
2q

3ǫe tr
s

(
I − 1

3
1 ⊗ 1 − n̂ ⊗ n̂

)
, (3.2.67)
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where I is the fourth-rank identity tensor with components Iijkl = (δikδjl + δilδjk)/2. Our

goal is to obtain closed-form expressions for the derivatives ∂ǫev/∂ǫ and ∂ǫes/∂ǫ.

Using the same strain invariant formulation of the previous section, we now write the

same local residual vector as r = r(ǫe tr
v , ǫe tr

s ,x), where x is the vector of local unknowns.

We recall that the trial elastic strains were held fixed at the local level; however, at the

global level they themselves are now the iterates. Consequently, at the converged state

where r = 0, we now write the strain derivatives of the residual vector as

∂r

∂ǫ
=
∂r

∂ǫ

∣∣∣∣
x

+

(
∂r

∂x

∣∣∣∣
ǫe tr
v ,ǫe tr

s

)
· ∂x

∂ǫ
= 0, (3.2.68)

which gives

a · ∂x

∂ǫ
= −∂r

∂ǫ

∣∣∣∣
x

=⇒ ∂x

∂ǫ
= −b · ∂r

∂ǫ

∣∣∣∣
x

. (3.2.69)

We recognize a as the same 3 × 3 tangent matrix r′(x) in (3.2.65) evaluated at the locally

converged state, and b = a−1. In component form, we have





∂ǫev/∂ǫ

∂ǫes/∂ǫ

∂∆λ/∂ǫ





=




b11 b12 b13

b21 b22 b23

b31 b32 b33


 =





(1 − ∆λβθH3)1√
2/3n̂

−θ∂piF1





, (3.2.70)

in which ∂pi/∂ǫ = θ1, and

θ = c−1∆λf ′(pi − p∗i )v0p
∗
i

α(1 −N)

M − αψiN
, (3.2.71)

is the linearization of the term associated with the state parameter ψi. This facilitates the

solution of the desired strain derivatives,

∂ǫev
∂ǫ

= b̃111 +

√
2

3
b12n̂,

∂ǫes
∂ǫ

= b̃211 +

√
2

3
b22n̂, (3.2.72)

where

b̃11 = (1 − ∆λβθH3)b11 − (θ∂piF )b13,

b̃21 = (1 − ∆λβθH3)b21 − (θ∂piF )b23. (3.2.73)
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Defining the matrix product

[
D11 D12

D21 D22

]
=

[
D11 D12

D21 D22

][
b̃11 b12

b̃21 b22

]
, (3.2.74)

the consistent tangent operator then becomes

c =

(
D11 −

2q

9ǫe tr
s

)
1 ⊗ 1 +

√
2

3

(
D121 ⊗ n̂ +D21n̂ ⊗ 1

)

+
2q

3ǫe tr
s

(I − n̂ ⊗ n̂) +
2

3
D22n̂ ⊗ n̂. (3.2.75)

In the elastic regime the submatrix [ bij ] becomes an identity matrix, and hence Dij = Dij

for i, j = 1, 2. In this case, c reduces to the hyperelastic tangent operator ce.

Remark 2. As shown in Figure 3.3, the proposed yield and plastic potential functions create

corners on the compaction side of the hydrostatic axis. While the model is primarily devel-

oped to accurately capture dilative plastic flow, and therefore is not expected to perform

well in stress states dominated by hydrostatic compaction, numerical problems could still

arise in general boundary-value problem simulations when the stress ratio η as defined by

(3.2.7) goes to zero or even becomes negative. In order to avoid a negative η, we introduce

a ‘cap’ on the plastic potential function such that

Q =

{
q + ηp if η = η ≥ χM ,

−p if η = η < χM ,
(3.2.76)

where χ is a user-specified parameter controlling the position of the plastic potential function

cap, e.g., χ = 0.10. For the case where η < χM , the local residual vector simplifies to

r(x) =





ǫev − ǫe tr
v − ∆λ

ǫes − ǫe tr
s

F





. (3.2.77)

The local tangent operator is given by

r′(x) =




1 0 −1

0 1 0

(D11∂p +D21∂q)F (D12∂p +D22∂q)F 0


 . (3.2.78)
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Finally, the strain derivative of r holding x fixed reduces to

∂r

∂ǫ

∣∣∣∣
x

=





1
√

2/3n̂

0





. (3.2.79)

Of course, one can also insert a smooth cap near the nose of the plastic potential function

as an alternative to the planar cap.

3.3 Finite deformation plasticity; localization of deformation

In the preceding section we have reformulated an infinitesimal rigid-plastic constitutive

model for sands to accommodate non-associated plasticity and hyperelasticity. In this

section we further generalize the model to accommodate finite deformation plasticity. The

final model is then used to capture deformation and failure initiation in dense sands, focusing

on the effects of uneven void distribution on the local and global responses.

3.3.1 Entropy inequality

Consider the multiplicative decomposition of deformation gradient for a local material point

X [30, 115, 116]

F (X, t) = F e(X, t) · F p(X, t). (3.3.1)

In the following we shall use as a measure of elastic deformation the contravariant tensor field

be reckoned with respect to the current placement, called the left Cauchy-Green deformation

tensor,

be = F e · F e t. (3.3.2)

Assume then that the free energy is given by

Ψ = Ψ(X, be, εps ). (3.3.3)

As in the infinitesimal model, we investigate conditions under which we could isolate an

elastic stored energy function from the above free energy function.
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For the purely mechanical theory the local dissipation function takes the form

D = τ : d − dΨ(X, be, εps )

dt
≥ 0, (3.3.4)

where τ = Jσ is the symmetric Kirchhoff stress tensor, J = det(F ), d = sym(l) is the

rate of deformation tensor, and l is the spatial velocity gradient. Using the chain rule and

invoking the standard Coleman relations yields the constitutive equation [117]

τ = 2
∂Ψ(X, be, εps )

∂be · be, (3.3.5)

along with the reduced dissipation inequality

D = τ : dp − πiε̇
p
s ≥ 0, (3.3.6)

where dp is the plastic component of the rate of deformation,

dp = sym(lp), lp := F e · Lp · F e−1, Lp := Ḟ
p · F p−1, (3.3.7)

and

πi =
∂Ψ(X, be, εps )

∂εps
, (3.3.8)

is a stress-like plastic internal variable equivalent to pi of the infinitesimal theory.

We assume that πi evolves in the same way as pi, i.e.,

−π̇i = φ(πi − π∗i )ε̇
p
s , (3.3.9)

where π∗i depends not only on πi but also on be. Integrating (3.3.9) gives

πi = πi0 −
∫ εps

εps0

φ(πi − π∗i ) dεps . (3.3.10)

Integrating once more, we get

Ψ(X, be, εps ) =

∫ εps

εps0

πi0 dεps −
∫ εps

εps0

∫ εps

εps0

φ(πi − π∗i ) dεps dε
p
s + Ψ e(X, be) + Ψ0, (3.3.11)

where Ψ e(X, be) is the elastic stored energy function. Finally, using the constitutive equation
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(3.3.5) once again, we get

τ = 2



∂Ψ e(X, be)

∂be +

∫ εps

εps0

∫ εps

εps0

φ′(πi − π∗i )
∂π∗i
∂be dεps dε

p
s

︸ ︷︷ ︸
O(∆εps 2)



· be. (3.3.12)

The second-order terms in (3.3.12) can be ignored at the initial stage of loading when ∆εps

is small, thus leaving the Kirchhoff stress varying with the elastic stored energy function

alone. When ∆εps is large, φ(πi−π∗i ) vanishes at critical state, and so the elastic and plastic

parts of the free energy uncouple. In both cases the stresses can be expressed in terms of

the elastic stored energy function alone, i.e.,

τ = 2
∂Ψ e(X, be)

∂be · be. (3.3.13)

Once again, the perfectly plastic behavior at critical state is a key feature of the model that

allows for the uncoupling of the free energy.

3.3.2 Finite deformation plasticity model

Consider the stress invariants

p =
1

3
tr τ , q =

√
3

2
‖ξ‖, ξ = τ − p1. (3.3.14)

Then, as in the infinitesimal theory the yield function can be defined as

F = q + ηp ≤ 0, (3.3.15)

where

η =

{
M [1 + ln(πi/p)] if N = 0;

(M/N)
[
1 − (1 −N)(p/πi)

N/(1−N)
]

if N > 0.
(3.3.16)

The material parameters M and N are similar in meaning to those of the infinitesimal

theory, although their values should now be calibrated in the finite deformation regime.



44 CHAPTER 3. MESO-SCALE SIMULATION OF GRANULAR MEDIA

The flow rule may be written as before,

dp = λ̇q, q =
β

3

∂F

∂p
1 +

√
3

2

∂F

∂q
n̂, n̂ = ξ/‖ξ‖, (3.3.17)

where β ≤ 1 is the non-associativity parameter. We postulate a similar hardening law in

Kirchhoff stress space given by (3.3.9), with

sgn [φ (πi − π∗i )] = sgnH, (3.3.18)

to capture either a hardening or softening response depending on the position of the state

point relative to the limit hardening dilatancy. Table 3.3 then summarizes the rate equations

for the finite deformation plasticity model.

Table 3.3: Summary of rate equations for plasticity model for sands, finite deformation
version.

1. Velocity gradient: l = le + lp

2. Hyperelastic rate equation: τ̇ = αe : le

3. Flow rule: dp = sym(lp) = λ̇q, ωp = skw(lp) = 0

4. State parameter: ψ̇i = v̇ + λ̃π̇i/πi

5. Hardening law: −π̇i = φ(πi − π∗i )λ̇

6. Consistency condition: f : τ̇ −Hλ̇ = 0, f = ∂F/∂τ

7. Kuhn-Tucker conditions: λ̇ ≥ 0, F ≤ 0, λ̇F = 0

The model summarized in Table 3.3 has some noteworthy features. First, the for-

mulation assumes that the plastic spin ωp is zero (see [118] for some discussions on the

significance of the plastic spin). Second, the fourth-order spatial elastic tangent operator

αe can be determined from the expression

αe = ce + τ ⊕ 1 + τ ⊖ 1, (3.3.19)

where (τ ⊕1)ijkl = τjlδik, (τ ⊖1)ijkl = τilδjk, and ce is a spatial tangential elasticity tensor

obtained from the push-forward of all the indices of the second tangential elasticity tensor



3.3. FINITE DEFORMATION PLASTICITY 45

defined in [30]. Finally, the specific volume varies according to the kinematical relation

v = Jv0 =⇒ v̇ = J̇v0 = Jv0 tr(l) = v tr(l). (3.3.20)

Thus, just as in the infinitesimal theory where the rate equations may be viewed as driven

by the strain rate ǫ̇, the rate equations shown in Table 3.3 may be viewed as driven by the

spatial velocity gradient l.

3.3.3 Numerical implementation

For the problem at hand we employ a standard elastic predictor-plastic corrector algorithm

based on the product formula for be, as summarized in Table 3.4. Let

be
n = F e

n · F e t
n . (3.3.21)

Suppressing plastic flow, the trial elastic predictor for be is

be tr ≡ be tr
n+1 = fn+1 · be

n · f t
n+1 , fn+1 =

∂xn+1

∂xn
. (3.3.22)

The plastic corrector emanates from the exponential approximation

be = exp(−2∆λq) · be tr , q ≡ qn+1 =
∂Q

∂τ
. (3.3.23)

From the co-axiality of plastic flow, the principal directions of q and τ coincide.

Next we obtain a spectral decomposition of be,

be =
3∑

A=1

(λe
A)2m(A) , m(A) = n(A) ⊗ n(A), (3.3.24)

where λe
A are the elastic principal stretches, n(A) are the unit principal directions, and m(A)

are the spectral directions. The corresponding elastic logarithmic stretches are

εeA = ln(λe
A) , A = 1, 2, 3. (3.3.25)

From material frame indifference Ψ e(X, be) only varies with εeA, and so we can write Ψ e =
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Table 3.4: Return mapping algorithm for plasticity model for sands, finite deformation
version.

1. Elastic deformation predictor: be tr = fn+1 · be
n · f t

n+1

2. Elastic stress predictor: τ tr = 2(∂Ψ e/∂be tr) · be tr; πtr
i = πi,n

3. Check if yielding: F (ptr, qtr, πtr
i ) ≥ 0?

No, set be = be tr; τ = τ tr; πi = πtr
i and exit

4. Yes, initialize ∆λ = 0 and iterate for ∆λ (steps 5-8)

5. Spectral decomposition: be tr =
∑3

A=1(λ
e tr
A )2mtr(A)

6. Plastic corrector in principal logarithmic stretches: εeA = ln(λe
A),

εe tr
A = ln(λe tr

A ), εeA = εe tr
A − ∆λqA, τA = ∂Ψ e/∂εeA , A = 1, 2, 3.

7. Update plastic internal variable πi:

(a) Total deformation gradient: F = fn+1 · F n

(b) Specific volume: v = v0 detF = v0J

(c) Initialize πi = πi,n and iterate for πi (steps 7d-f)

(d) State parameter: ψi = v − vc0 + λ̃ ln (−πi)

(e) Limit hardening plastic variable:

π∗i = p×
{

exp (αψi/M) if N = N = 0,

(1 − αψiN/M)(N−1)/N if 0 ≤ N ≤ N 6= 0.

(f) Plastic internal variable: πi = πi,n − φ(πi − π∗i )∆λ

8. Discrete consistency condition: F (p, q, πi) = 0

9. Spectral resolution: be =
∑3

A=1(λ
e
A)2mtr(A)
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Ψ e(X, εe1, ε
e
2, ε

e
2), which gives

∂Ψ e

∂be =
1

2

3∑

A=1

1

(λe
A)2

∂Ψ e

∂εeA
m(A). (3.3.26)

The elastic constitutive equation then writes

τ = 2
∂Ψ e

∂be · be =
3∑

A=1

τAm(A) , τA =
∂Ψ e

∂εeA
, (3.3.27)

implying that the spectral directions of τ and be also coincide. Thus, be and q are also

co-axial, and for (3.3.23) to hold, be and be tr must also be co-axial, i.e.,

m(A) = mtr (A). (3.3.28)

This allows the plastic corrector phase to take place along the principal axes, as shown in

Table 3.4.

Alternatively, we can utilize the algorithm developed for the infinitesimal theory by

working on the invariant space of the logarithmic elastic stretch tensor. Let

εev = εe1 + εe2 + εe3 , εes =
1

3

√
2[(εe1 − εe2)

2 + (εe1 − εe3)
2 + (εe2 − εe3)

2], (3.3.29)

denote the first two invariants of the logarithmic elastic stretch tensor (similar definitions

may be made for εe tr
v and εe tr

s ), and

p =
1

3
(τ1 + τ2 + τ3) , q =

√
[(τ1 − τ2)2 + (τ1 − τ3)2 + (τ2 − τ3)2]/2, (3.3.30)

denote the first two invariants of the Kirchhoff stress tensor. If we take the functional

relationships p = p(εev, ε
e
s), q = q(εev, ε

e
s), and πi = πi(ε

e
v, ε

e
s ,∆λ) as before, using the same

elastic stored energy function but now expressed in terms of the logarithmic principal elastic

stretches, then the local residual vector writes

r = r(x) =





εev − εe tr
v + ∆λβ∂pF

εes − εe tr
s + ∆λ∂qF

F





; x =





εev

εes

∆λ





. (3.3.31)
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In this case, the local Jacobian r′(x) takes a form identical to that developed for the

infinitesimal theory, see (3.2.65).

Comparing Tables 3.2 and 3.4, we see that the algorithm for finite deformation plasticity

differs from the infinitesimal version only through a few additional steps entailed for the

spectral decomposition and resolution of the deformation and stress tensors. Construction

of be from the spectral values requires two steps. The first involves resolution of the principal

elastic logarithmic stretches from the first two invariants calculated from return mapping,

εeA =
1

3
εevδA +

√
3

2
εesn̂A , n̂A =

√
2

3

εe tr
A − (εe tr

v /3)δA
εe tr
s

, (3.3.32)

where δA = 1 for A = 1, 2, 3.The above transformation entails scaling the deviatoric com-

ponent of the predictor tensor by the factor εes/ε
e tr
s and adding the volumetric component.

The second step involves a spectral resolution from the principal elastic logarithmic strains

(cf. (3.3.24))

be =
3∑

A=1

exp(2εeA)mtr (A). (3.3.33)

The next section demonstrates that a closed-form consistent tangent operator is available

for the above algorithm.

3.3.4 Algorithmic tangent operator

For simplicity, we restrict to a quasi-static problem whose weak form of the linear momentum

balance over an initial volume B with surface ∂B reads

∫

B

(GRAD η : P − ρ0η · G) dV −
∫

∂Bt

η · t dA = 0, (3.3.34)

where ρ0G is the reference body force vector, t = P · n is the nominal traction vector on

∂Bt ⊂ ∂B, n is the unit vector on ∂Bt, η is the weighting function,

P = τ · F−t (3.3.35)
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is the nonsymmetric first Piola-Kirchhoff stress tensor, and GRAD is the gradient operator

evaluated with respect to the reference configuration. We recall the internal virtual work

W e
INT =

∫

Be

GRADη : P dV =

∫

Be

gradη : τ dV (3.3.36)

for any Be ⊂ B, where grad is the gradient operator evaluated with respect to the current

configuration. The first variation gives [64]

δW e
INT =

∫

Be

gradη : a : grad δudV , (3.3.37)

where u is the displacement field, and

a = α − τ ⊖ 1, δτ = α : grad δu. (3.3.38)

Evaluation of a thus requires determination of the algorithmic tangent operator α.

We also recall the following spectral representation of the algorithmic tangent operator

α [64]

α =
3∑

A=1

3∑

B=1

aABm(A) ⊗ m(B) (3.3.39)

+
3∑

A=1

∑

B 6=A

τB − τA
λe tr 2
B − λe tr 2

A

(
λe tr 2
B m(AB) ⊗ m(AB) + λe tr 2

A m(AB) ⊗ m(BA)
)

,

where m(AB) = n(A) ⊗ n(B), A 6= B. The coefficients aAB are elements of the consistent

tangent operator obtained from a return mapping in principal axes, and is formally defined

as

aAB =
∂τA
∂εe tr

B

≡ ∂τA
∂εB

, A,B = 1, 2, 3. (3.3.40)

The values of these coefficients are specific to the constitutive model in question, as well as

dependent on the numerical integration algorithm utilized for the model. For the present

critical state plasticity theory aAB is evaluated as follows.

The expression for a principal Kirchhoff stress is

τA = pδA +

√
2

3
q n̂A , A = 1, 2, 3. (3.3.41)
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Differentiating with respect to a principal logarithmic strain gives

aAB =
∂τA
∂εB

= δA

(
D11

∂εev
∂εB

+D12
∂εes
∂εB

)
+

√
2

3
n̂A

(
D21

∂εev
∂εB

+D22
∂εes
∂εB

)

+
2q

3εe tr
s

(
δAB − 1

3
δAδB − n̂An̂B

)
, A,B = 1, 2, 3, (3.3.42)

where δAB is the Kronecker delta. The coefficients D11, D22, and D21 are identical in

form to those shown in (3.2.52) except that the strain invariants now take on logarithmic

definitions. As in the infinitesimal theory, we obtain the unknown strain derivatives above

from the local residual vector, whose own derivatives write

∂rA
∂εB

=
∂rA
∂εB

∣∣∣∣
x

+

3∑

C=1

∂rA
∂xC

∣∣∣∣
εe tr
v ,εe tr

s︸ ︷︷ ︸
aAC

∂xC
∂εB

= 0, A,B = 1, 2, 3, (3.3.43)

where the matrix [aAB] corresponds to the same algorithmic local tangent operator given

in (3.2.65). Letting [bAB] denote the inverse of [aAB], we can then solve

∂xA
∂εB

= −
3∑

C=1

bAC
∂rC
∂εB

∣∣∣∣
x

, A,B = 1, 2, 3. (3.3.44)

This latter equation provides the desired strain derivatives,





∂εev/∂εA

∂εes/∂εA

∂∆λ/∂εA





=




b11 b12 b13

b21 b22 b23

b31 b32 b33








(1 − ∆λβθH3)δA√
2/3n̂A

−θ∂πi
FδA





, A = 1, 2, 3, (3.3.45)

where

θ = c−1∆λφ′(πi − π∗i )vπ
∗
i

α(1 −N)

M − αψiN
,

c = 1 + φ′(πi − π∗i )∆λ

[
1 − λ̃α(1 −N)

M − αψiN

(
π∗i
πi

)]
. (3.3.46)

Note that the finite deformation expression for θ utilizes the current value of the specific

volume v whereas the infinitesimal version uses the initial value v0 (cf. (3.2.71)). Inserting

the expressions for ∂εev/∂εA and ∂εes/∂εA back in (3.3.42) yields the closed-form solution
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for aAB, which takes an identical form to (3.2.75):

aAB =

(
D11 −

2q

9εe tr
s

)
δAδB +

√
2

3

(
D12δAn̂B +D21n̂AδB

)

+
2q

3εe tr
s

(δAB − n̂An̂B) +
2

3
D22n̂An̂B, A,B = 1, 2, 3. (3.3.47)

See (3.2.72)–(3.2.74) for specific expressions for the coefficients Dij .

3.3.5 Localization condition

Following [29, 64], we summarize the following alternative (and equivalent) expressions

for the localization condition into planar bands. We denote the continuum elastoplastic

counterpart of the algorithmic tensor α by

αep =

3∑

A=1

3∑

B=1

aep
ABm(A) ⊗ m(B) (3.3.48)

+
3∑

A=1

∑

B 6=A

τB − τA
λe 2
B − λe 2

A

(
λe 2
B m(AB) ⊗ m(AB) + λe 2

A m(AB) ⊗ m(BA)
)

,

where aep
AB is the continuum elastoplastic tangent stiffness matrix in principal axes. (Note,

this formula appears in [43, 111, 114] with a factor “1/2” before the spin-term summations,

a typographical error). Then,

aep = αep − τ ⊖ 1 (3.3.49)

defines the continuum counterpart of the fourth-order tensor a in (3.3.38).

Alternatively, we denote the constitutive elastoplastic material tensor cep by the expres-

sion [117]

cep =
3∑

A=1

3∑

B=1

aep
ABm(A) ⊗ m(B) +

3∑

A=1

τAω(A), (3.3.50)

in which

ω(A) = 2
[
Ib − be ⊗ be + I3b

−1
A (1 ⊗ 1 − I) + bA(be ⊗ m(A) + m(A) ⊗ be)

− I3b
−1
A (1 ⊗ m(A) + m(A) ⊗ 1) + ψm(A) ⊗ m(A)

]
/DA, (3.3.51)
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where bA is the Ath principal value of be, I1 and I3 are the first and third invariants of be,

Ib = (be ⊕ be + be ⊖ be)/2, ψ = I1bA + I3b
−1
A − 4b2A, (3.3.52)

and

DA := 2b2A − I1bA + I3b
−1
A . (3.3.53)

Note that cep
ijkl = 2FiAFjBFkCFlDCep

ABCD is the spatial push-forward of the first tangential

elastoplastic tensor Cep [30]. Then,

aep = cep + τ ⊕ 1 (3.3.54)

defines an alternative expression to (3.3.49).

Using aep from either (3.3.49) or (3.3.54), we can evaluate the elements of the Eulerian

elastoplastic acoustic tensor a as

aij = nka
ep
ikjlnl, (3.3.55)

where nk and nl are elements of the unit normal vector n to a potential deformation band

reckoned with respect to the current configuration. Defining the localization function as

F = inf
∣∣
n
(det a), (3.3.56)

we can then infer the inception of a deformation band from the initial vanishing of F .

Though theoretically one needs to use the constitutive operators αep or cep to obtain the

acoustic tensor a, the algorithmic tangent tensors are equally acceptable for bifurcation

analyses for small step sizes [114].

3.4 Numerical simulations

We present two numerical examples demonstrating the meso-scale modeling technique. To

highlight the triggering of strain localization via imposed material inhomogeneity, we only

considered regular specimens (either rectangular or cubical) along with boundary conditions

favoring the development of homogeneous deformation (a pin to arrest rigid body modes

and vertical rollers at the top and bottom ends of the specimen). A common technique of

perturbing the initial condition is to prescribe a weak element; however, this is unrealistic
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and arbitrary. In the following simulations we have perturbed the initial condition by

prescribing a spatially varying specific volume (or void ratio) consisting of horizontal layers

of relatively homogeneous density but with some variation in the vertical direction. This

resulted in vein-like soil structures in the density field closely resembling that shown in the

photograph of Figure 3.1 and mimicked the placement of sand with a common laboratory

technique called pluviation. The specific volume fields were assumed to range from 1.60 to

1.70, with a mean value of 1.63. These values were chosen such that all points remained on

the dense side of the CSL (ψi < 0).

3.4.1 Plane strain simulation

As a first example we considered a finite element mesh 1 m wide and 2 m tall and consisting

of 4,096 constant strain triangular elements shown in Figure 3.5. The mesh is completely

symmetric to avoid any bias introduced by the triangles. The vertical sides were subjected

to pressure loads (natural boundary condition), whereas the top end was compressed by

moving roller supports (essential boundary condition). The load-time functions are shown

in Figure 3.6 with scaling factors γ = 100 kPa and β = 0.40 m for pressure load G1(t)

and vertical compression G2(t), respectively. The material parameters are summarized

in Tables 3.5 and 3.6 and roughly represent those of dense Erksak sand, see [2]. The

preconsolidation stress was set to pc = −130 kPa and the reference specific volume was

assumed to have a value vc0 = 1.915 (uniform for all elements). The distribution of initial

specific volume is shown in Figure 3.7.
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Figure 3.5: Finite element mesh for plane strain compression problem.
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Figure 3.6: Load-time functions.
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Symbol Value Parameter

κ̃ 0.03 compressibility
α0 0 coupling coefficient
µ0 2000 kPa shear modulus
p0 −100 kPa reference pressure
ǫev0 0 reference strain

Table 3.5: Summary of hyperelastic material parameters (see [1] for laboratory testing
procedure).

Symbol Value Parameter

λ̃ 0.04 compressibility
N 0.4 for yield function

N 0.2 for plastic potential
h 280 hardening coefficient

Table 3.6: Summary of plastic material parameters (see [2] for laboratory testing procedure).

Figure 3.8 shows contours of the determinant function and the logarithmic deviatoric

strains at the onset of localization for the case of finite deformations, which occurred at a

nominal axial strain of 12.26%. Localization for the infinitesimal model was slightly delayed

at 12.34%. The figure shows a clear correlation between regions in the specimen where the

determinant function vanished for the first time and where the deviatoric strains were most

intense. Furthermore, the figure reveals an X-pattern of shear band formation captured by

both shear deformation and determinant function contours, reproducing those observed in

laboratory experiments [4, 80].
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Figure 3.7: Initial specific volume for plane strain compression problem.
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Figure 3.8: Contours of: (a) determinant function; and (b) deviatoric invariant of logarith-

mic stretches at onset of localization.

Figure 3.9 displays contours of the plastic modulus and the logarithmic volumetric
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Figure 3.9: Contours of: (a) plastic hardening modulus; and (b) volumetric invariant of
logarithmic stretches at onset of strain localization.

strains at the onset of localization. We recall that for this plasticity model the plastic

modulus is a function of the state of stress, and in this figure low values of hardening

modulus correlate with areas of highly localized shear strains shown in Figure 3.8. On the

other hand, volumetric strains at localization appear to resemble the initial distribution of

specific volume shown in Figure 3.7. In fact the blue pocket of high compression extending

horizontally at the top of the sample (Figure 3.9b) is representative of that experienced by

the red horizontal layer of relatively low density shown in Figure 3.7. The calculated shear

bands were predominantly dilative.

3.4.2 Three-dimensional simulation

For the 3D simulation we considered a cubical finite element mesh shown in Figure 3.10. The

mesh is 1 m wide by 1 m deep by 2 m tall and consists of 2000 eight-node brick elements.

All four vertical faces of the mesh were subjected to pressure loads of 100 kPa (natural

boundary condition). The top face at z = 2 m was compressed vertically by moving roller

supports according to the same load-time function shown in Figure 3.6 (essential boundary

condition), effectively replicating a laboratory testing protocol for ‘triaxial’ compression on

a specimen with a square cross-section. The initial distribution of specific volume is also



58 CHAPTER 3. MESO-SCALE SIMULATION OF GRANULAR MEDIA

0
0.5

1

0

0.5

1
0

0.5

1

1.5

2

x−axisy−axis

z−
ax

is

1.61

1.62

1.63

1.64

1.65

1.66

1.67

1.68

1.69

Figure 3.10: Finite element mesh and initial specific volume for 3D compression problem.

shown in Figure 3.10 and roughly mimicked the profile for plane strain shown in Figure 3.7.

Figures 3.11 and 3.12 compare the nominal axial stress and volume change behaviors,

respectively, of specimens with and without imposed heterogeneities. The homogeneous

specimen was created to have a uniform specific volume equal to the volume average of the

specific volume for the equivalent heterogeneous specimen, or 1.63 in this case. We used

both the standard numerical integration and B-bar method for the calculations [119–121],

but there was not much difference in the predicted responses. However, softening within

the range of deformation shown in these figures was detected by all solutions except by the

homogeneous specimen simulation. Furthermore, an earlier overall dilation from an initially

contractive behavior was detected by the heterogeneous specimen simulation (Figure 3.12).

This reversal in volume change behavior from contractive to dilative is usually termed

‘phase transformation’ in the geotechnical literature, a feature that is not replicated by

classical Cam-Clay models. Figure 3.13 shows that this phase transition was captured by

the constitutive model by first yielding on the compression side of the yield surface, and

later by yielding on the dilation side.

Figure 3.14 shows contours of the determinant function F at a nominal axial strain of

8.78%, where the determinant vanished for the first time at a Gauss point located in the

interior of the heterogeneous specimen. Unlike the plane strain solution, the potential shear
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Figure 3.11: Nominal axial stress-axial strain responses for 3D compression problem.
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Figure 3.13: Stress path for homogeneous specimen simulation with finite deformation.

band did not exhibit an X-pattern in this case. Instead, the solution predicted a well-defined

band extending across the specimen. Note that the horizontal slices shown in Figure 3.14b

have been rotated by 90 degrees on the horizontal plane relative to the orientation of the

solid volume shown in Figure 3.14a for optimal 3D visualization (red regions in Figure 3.14a

must be matched with red regions in Figure 3.14b, etc.). As for the homogeneous specimen,

the computation was carried out up to 15% nominal axial strain but the sample did not

localize.

Figure 3.15 shows contours of the deviatoric invariant of logarithmic stretches at the

point of initial localization. Again, the horizontal slices (Figure 3.15b) are 90 degrees rotated

relative to the solid volume (Figure 3.15a) for better visualization. Comparing Figures 3.14

and 3.15, the solutions clearly correlated regions in the specimen where the determinant

function vanished for the first time with regions where the deviatoric strains were most

intense (a ‘blue’ determinant region correlates with a ‘red’ deviatoric strain region, etc.).

In contrast, Figure 3.16 shows contours of the volumetric invariant of logarithmic stretches

resembling the initial specific volume profile of Figure 3.10. In general, these observations are

similar to those observed for the plane strain example. For completeness, Figure 3.17 shows

the deformed FE mesh for the heterogeneous sample at the instant of initial localization,

suggesting that the specimen moved laterally as well as twisted torsionally. Note once again
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Figure 3.14: Determinant function at onset of localization.

that this non-uniform deformation was triggered by the imposed initial density variation

alone.

Finally, Figure 3.18 shows the convergence profiles of global Newton iterations for the

full 3D finite deformation simulation of a heterogeneous specimen with B-bar integration.

The iterations converged quadratically in all cases, suggesting optimal performance. We

emphasize that all of the results presented above only pertain to the prediction of when and

where a potential shear band will emerge. We have not pursued the simulations beyond

the point of bifurcation due to mesh sensitivity issues inherent in rate-independent classical

plasticity models in the post-localized regime. A host of regularization techniques either in

the constitutive description or finite element solution are available and should be used to

advance the solution to this regime.

3.5 Closure

We have presented a meso-scale finite element modeling approach for capturing deformation

and strain localization in dense granular materials using critical state plasticity theory

and nonlinear finite element analysis. This approach has been motivated in large part by
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Figure 3.15: Deviatoric invariant of logarithmic stretches at onset of strain localization.
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Figure 3.16: Volumetric invariant of logarithmic stretches at onset of strain localization.
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recent trends in geotechnical laboratory testing allowing accurate quantitative measurement

of the spatial density variation in discrete granular materials. The meso-scale approach

provides a more realistic mathematical representation of imperfection; hence, it is expected

to provide a more thorough capture of the deformation and strain localization processes in

these materials. Potential extensions of the studies include a three-invariant enhancement

of the plasticity model and application of the model to unstructured random density fields

(in contrast to the structured density fields simulated in this paper). These aspects will be

reported upon in a future publication.
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Chapter 4

Capturing strain localization in

dense sands with random density

This Chapter is published in: J.E. Andrade and R. I. Borja. Capturing strain localiza-

tion in dense sands with random density. International Journal for Numerical Methods in

Engineering, 2006. In press.

Abstract

This paper presents a three-invariant constitutive framework suitable for the numerical

analyses of localization instabilities in granular materials exhibiting unstructured random

density. A recently proposed elastoplastic model for sands based on critical state plasticity

is enhanced with the third stress invariant to capture the difference in the compressive and

extensional yield strengths commonly observed in geomaterials undergoing plastic deforma-

tion. The new three-invariant constitutive model, similar to its two-invariant predecessor,

is capable of accounting for meso-scale inhomogeneities as well as material and geometric

nonlinearities. Details regarding the numerical implementation of the model into a fully

nonlinear finite element framework are presented and a closed-form expression for the con-

sistent tangent operator, whose spectral form is used in the strain localization analyses,

is derived. An algorithm based on the spectral form of the so-called acoustic tensor is

proposed to search for the necessary conditions for deformation bands to develop. The

aforementioned framework is utilized in a series of boundary-value problems on dense sand

65
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specimens whose density fields are modeled as exponentially distributed unstructured ran-

dom fields to account for the effect of inhomogeneities at the meso-scale and the intrinsic

uncertainty associated with them.

4.1 Introduction

Shear bands in granular materials, characterized by thin zones of intense shearing, have been

a subject of considerable research interest since they impact many problems in the fields

of geoengineering and geoscience. In geoengineering, shear bands control the deformation

behavior and stability of earth structures such as dams, tunnels, excavations and founda-

tions. In geoscience, they are commonly associated with grain fracturing and grain size

reduction (termed “cataclasis” in the literature [43]) that are known to alter the strength

and transport properties of geological systems. Various experimental and theoretical studies

have thus attempted to analyze and describe the occurrence and patterns of shear bands in

granular materials such as soils and rocks.

In sand bodies, shear band formations are now investigated in the laboratory using

advanced testing techniques such as gamma-rays, stereophotogrammetry, and X-Ray Com-

puted Tomography (CT), see [80]. Along with the more traditional laboratory testing

procedures such as triaxial and simple shear testing, high-end testing provides an oppor-

tunity to view the specimen as an imperfect structure. For example, it is now possible

to measure quantitatively the density and displacement fields within the specimen with a

high degree of precision. Instead of viewing the entire specimen as a homogeneous element,

which has been traditionally done in the past, it is now possible to digitally measure and

quantify the properties and mechanical responses of an imperfect specimen on a finer scale.

Ironically, whereas development of very sophisticated constitutive models for element

testing has previously outpaced the development of laboratory testing capabilities support-

ing the demands of these complex models, the reverse is now true with the advent of high-end

precision laboratory testing. There is now a shortage of mathematical models that can ade-

quately capture the quantified heterogeneities in the properties and mechanical responses of

imperfect soil samples. This is because many of these sophisticated models are simply too

complex to be implemented efficiently into multi-purpose finite element codes, and so only

a handful of these models have been successful in finding their way into general-purpose

computer codes. Since heterogeneous samples require that their responses be analyzed as
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a boundary-value problem and not as an elemental point, many of these complex models

have to be reformulated first before they can be used for general-purpose boundary-value

problem simulations.

A promising approach to simulating material heterogeneity in specimens of discrete

granular materials such as sand bodies is through meso-scale modeling. By “meso-scale”

we mean a scale larger than a particle size but smaller than the specimen dimensions. We

do not wish to go to particle level at this point since there is currently a lack of testing

capabilities to capture all the particle information such as shapes, dimensions, and motion

of the individual particles throughout testing. In contrast, some of the high-end testing

techniques mentioned above, specifically the CT digital imaging technique, can very well be

combined with existing computer tools that permit an accurate quantification of material

heterogeneity in soil samples. Examples of such techniques include Digital Image Processing

(DIP) for quantifying the spatial density variation and Digital Image Correlation (DIC) for

tracking the motion of a group of particles contained in a “meso-element” having the size

of a pixel [83, 84].

From a modeling standpoint, a key variable that quantitatively describes material het-

erogeneity on a meso-scale level is density. Whereas it may be argued that other constitutive

variables such as strength and stiffness could also vary spatially within a soil sample, and

therefore they should also be considered as meso-variables, it is generally difficult if not

impossible to measure their spatial variation in a heterogeneous soil sample. In contrast,

DIP can be used to analyze pixel patterns provided by CT images to correlate the gray

level with density pattern in the individual pixels. Furthermore, strength and stiffness are

known to correlate strongly with density in soils, so it seems plausible to claim that density

is indeed a key measure of material heterogeneity.

Having chosen density as a key measure of material heterogeneity, we now consider a

constitutive model based on critical state plasticity theory that permits the specification

of spatial density variation within a soil sample. One such model, derived from the “Nor-

Sand” of Jefferies [2] and presented by Borja and Andrade [122], utilizes a variable called

“state parameter” ψ to describe the density of a meso-element relative to that at the critical

state line for the same effective mean normal stress [2, 75, 106]. Where the point lies below

the critical state line, ψ is negative (denser than critical), and where it lies above, ψ is

positive (looser than critical). Traditional Cam-Clay type models [65, 66, 72, 73, 104, 105],
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do not have the capability to independently prescribe the density (or void ratio) of a meso-

element, since, by prescribing the degree of overconsolidation [65] and the current state of

stress, one is bound to calculate a unique void ratio. By introducing the state parameter in

the constitutive description, the density (or other equivalent measures thereof, such as the

void ratio and specific volume) is effectively “detached” from the critical state line.

This paper moves one step further in refinement to the two-invariant model presented

by Borja and Andrade [122] in that we now also quantify the influence of the third stress

invariant in the constitutive description of meso-element behavior. Granular materials such

as soils are known to exhibit yield stresses in compression that are higher than those in

extension, so it only makes sense to include the third stress invariant in the constitutive

formulation. Furthermore, it has been shown that the third stress invariant does enhance

the onset of strain localization [111, 114], thus further motivating the present effort. For

the present paper we introduce the third stress invariant through Lode’s angle [123] and

employ a return mapping algorithm in principal elastic logarithmic stretches (within the

framework of multiplicative plasticity) to carry out the numerical integration in discrete

load steps.

Apart from the inclusion of the third stress invariant, the present paper also models the

effect of unstructured random density fields in the mathematical characterization of nearly

homogeneous soil samples at meso-scale. Borja and Andrade [122] have shown that a well

defined density structure, generated deterministically, could greatly impact the position of

the resulting shear band. However, in reality most laboratory testing procedures attempt

to generate as nearly uniform soil samples as possible. Thus the numerical simulations

presented in this paper focus on nearly homogeneous density fields, generated randomly

and without any preferred structure, to better capture reality. We show with extensive

numerical simulations that even with such minute perturbations in the density field a shear

band would still form even in cases where it would not form in perfectly homogeneous spec-

imens. Further, we show that different shear bands could form in each randomly generated

specimen, even with a very tight density distribution, affirming the common notion that

each physical specimen is unique.

Evaluation of the consistent tangent operator (CTO) is critical for the success of a

nonlinear iterative algorithm based on Newton’s method, and in this paper we derive such

tangent operator in spectral form based on Lie derivatives. Quite recently, Borja [114]

has shown that such operator can also be used in lieu of the constitutive tangent operator
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for strain localization analysis, so the CTO serves a dual role in the present numerical

simulations. All simulations presented in this paper have been conducted in the 3D finite

deformation regime, including the calculation of the minimum values of the localization

function for shear band analysis [64]. For the latter analysis we also present an algorithm

for a 3D search in spectral directions.

As for notations and symbols used in this paper, bold-faced letters denote tensors and

vectors; the symbol ‘·’ denotes an inner product of two vectors (e.g. a ·b = aibi), or a single

contraction of adjacent indices of two tensors (e.g. c · d = cijdjk); the symbol ‘:’ denotes

an inner product of two second-order tensors (e.g. c : d = cijdij), or a double contraction

of adjacent indices of tensors of rank two and higher (e.g. C : ǫe = Cijklǫ
e
kl); the symbol

‘⊗’ denotes a juxtaposition, e.g., (a ⊗ b)ij = aibj . Finally, for any symmetric second order

tensors α and β, (α ⊗ β)ijkl = αijβkl, (α ⊕ β)ijkl = βikαjl, and (α ⊖ β)ijkl = αilβjk.

4.2 Constitutive assumptions

In this section we present a three-invariant enhancement of the critical state plasticity

model by Borja and Andrade [122]. As mentioned in the Introduction, geomaterials exhibit

a higher yield strength in compression than in extension, so the addition of the third stress

invariant is critical for modeling the behavior of geomaterials more realistically. Further, the

hyperelastoplastic model hinges on the well established assumption that the deformation

gradient tensor can be decomposed multiplicatively into elastic and plastic parts [115],

F = F e · F p, (4.2.1)

where F e and F p are defined as the elastic and plastic deformation gradient, respectively.

4.2.1 The hyperelastic model

Consider an isotropic hyperelastic response entailing a strain energy that is a function of

either the elastic right Cauchy-Green deformation tensor Ce or the left Cauchy-Green tensor

be i.e., Ψ = Ψ (Ce) = Ψ (be) [30, 124], where

Ce := F e t · F e and be := F e · F e t. (4.2.2)
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The principal elastic stretches emanate from F e · Na = λe
an

a (no sum), where λe
a for

a = 1, 2, 3 are the principal elastic stretches in the corresponding principal directions Na

and na in the intermediate and current configuration, respectively. We recall the well known

spectral decomposition,

be =
3∑

a=1

λe 2
a na ⊗ na. (4.2.3)

The elastic region is assumed to be governed by the isotropic strain energy function

proposed in [1] and utilized in modeling of granular bodies in [66, 125]

Ψ (εev, ε
e
s) = Ψ̃ (εev) +

3

2
µeεe 2

s , (4.2.4)

where

Ψ̃ (εev) = −p0κ̂ expω, ω = −ε
e
v − εev 0

κ̂
, µe = µ0 +

α0

κ̂
Ψ̃ (εev) . (4.2.5)

The independent variables are the volumetric and deviatoric invariants of the elastic loga-

rithmic stretch tensor, respectively,

εev = εe1 + εe2 + εe3 and εes =
1

3

√
2
[
(εe1 − εe2)

2 + (εe2 − εe3)
2 + (εe3 − εe1)

2
]
, (4.2.6)

where εea ≡ lnλe
a. Hence, the strain energy function is an invariant function of the elastic

deformations. The Kirchhoff stress tensor τ is coaxial with the deformation tensor be and

defined such that

τ = 2
∂Ψ

∂be · be. (4.2.7)

The above hyperelastic model produces pressure-dependent elastic bulk and shear moduli,

a feature commonly observed in the laboratory. The elastic constants necessary for a full

description of the elasticity are the reference strain εev 0 and the reference pressure p0 of

the elastic compression curve, as well as the compressibility index κ̂. The model produces

coupled volumetric and deviatoric responses in the case α0 6= 0 for which µe is a nonlinear

function of the volumetric deformations. Otherwise, for α0 = 0 the responses are decoupled

and the shear modulus µe ≡ µ0 is constant.
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4.2.2 Yield surface, plastic potential, their derivatives and the flow rule

We define the three invariants of the Kirchhoff stress tensor as

p =
1

3
tr τ , q =

√
3

2
‖ξ‖, 1√

6
cos 3θ =

tr ξ3

χ3
≡ y, (4.2.8)

where ξ = τ − p1 is the deviatoric component of the stress tensor τ , and χ =
√

tr ξ2. The

quantity p is called the mean normal stress and is assumed negative throughout. Further, θ

is the Lode’s angle whose values range from 0 ≤ θ ≤ π/3; it defines an angle on a deviatoric

plane emanating from a tension corner.

From these three stress invariants we construct a yield surface of the form

F (τ , πi) = F (p, q, θ, πi) = ζ (θ) q + pη (p, πi) (4.2.9)

where

η =





M [1 + ln (πi/p)] if N = 0

M/N
[
1 − (1 −N) (p/πi)

N/(1−N)
]

if N > 0.
(4.2.10)

The image stress πi < 0 controls the size of the yield surface; it is defined such that the

stress ratio η = −ζq/p = M when p = πi. Note the subscript ‘i’ stands for image and should

not be confused with index notation. The parameter N ≥ 0 determines the curvature of

the yield surface on a meridian plane and it typically has a value less than or equal to 0.4

for sands [2]. Lode’s angle θ plays the role of the third stress invariant modifying the shape

of the yield surface on a deviatoric plane through the function ζ = ζ (θ). Many forms for

the function ζ (θ) have been proposed in the literature (see [126] for a historical survey).

Here we adopt the form proposed by Gudehus in [127] and Argyris et al. in [128], namely,

ζ (θ, ρ) =
(1 + ρ) + (1 − ρ) cos 3θ

2ρ
(4.2.11)

where ρ is a constant parameter called ellipticity. The above function is only convex for

7/9 ≤ ρ ≤ 1 [129] and satisfies the boundary conditions: (a) ζ = 1/ρ when θ = 0 i.e., tension

corner; and (b) ζ = 1 when θ = π/3 i.e., compression corner. A typical three-invariant yield

surface of the form presented above for ρ = 0.78 is shown in Figure 1. It can be seen from

this figure that the yield surface exhibits a greater yield strength under compression than

under extension.
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t =t =t1 2 3

t1 t2

t3

(a) (b)

Figure 4.1: Three-invariant yield surface in Kirchhoff stress space for ρ = 0.78. (a) Cross-
section on deviatoric plane, dashed line represents two-invariant counterpart for comparison
and (b) three-dimensinal view.

Additionally, to underscore the fact that the formulation presented herein is general and

independent of the choice of the shape function ζ (θ, ρ), in some of our numerical examples,

we will also utilize the form proposed by Willam and Warnke [130] i.e.,

ζ (θ, ρ) =
4
(
1 − ρ2

)
cos2 θ + (2ρ− 1)2

2 (1 − ρ2) cos θ + (2ρ− 1) [4 (1 − ρ2) cos2 θ + 5ρ2 − 4ρ]1/2
. (4.2.12)

This function is smooth and convex in the range 1/2 ≤ ρ ≤ 1, and has the same boundary

conditions than the shape function in (4.2.11).

Similar to the yield surface, we can postulate a plastic potential function of the form

Q (τ , πi) = Q (p, q, θ, πi) = ζ (θ) q + pη (p, πi) (4.2.13)

with

η =





M [1 + ln (πi/p)] if N = 0

M/N
[
1 −

(
1 −N

)
(p/πi)

N/(1−N)
]

if N > 0.
(4.2.14)

When πi = πi, N = N and ζ = ζ, plastic flow is associative; otherwise, it is nonassociative

in both the volumetric and deviatoric sense. The material parameter N controls the amount

of volumetric nonassociativity, whereas the shape function ζ = ζ (θ, ρ) plays a similar role

than that used in the yield surface, but the ellipticity ρ can be different from ρ, hence
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introducing deviatoric nonassociativity. We note in passing that the plastic potential in

(4.2.13) is essentially that proposed by Jefferies in [2] for ζ = 1.

Recall the multiplicative decomposition of the deformation gradient tensor in (4.2.1),

which leads to an additive decomposition of the velocity gradient l,

l = le + lp ⇒ d = de + dp, (4.2.15)

where d ≡ sym l, de ≡ sym le, and dp ≡ sym lp. Neglecting the plastic spin ωp (see [118]

for significance and consequences), we write the flow rule as

dp = λ̇q, (4.2.16)

where λ̇ is the so-called consistency parameter, and q := ∂Q/∂τ . Adopting the spectral

approach [111], we recast the above gradient as

q =
∂Q

∂τ
=

3∑

a=1

∂Q

∂τa
ma =

3∑

a=1

qam
a (4.2.17)

where ma := na ⊗na, and the vectors na for a = 1, 2, 3, are the principal directions of the

stress tensor τ , i.e., τ · na = τan
a, with principal stresses τa for a = 1, 2, 3. Note that the

stress tensor τ and the elastic left Cauchy-Green deformation tensor be are coaxial due to

the isotropy assumption made in Section 4.2.1 above. The spectral decomposition of the

flow rule is consequently a by-product of the coaxiality of the tensors τ and be as well as

the fact that Q is an isotropic function of the stress tensor and hence its gradient and the

stress tensor are also coaxial. It is then useful to expand qa such that

qa =
∂Q

∂p

∂p

∂τa
+
∂Q

∂q

∂q

∂τa
+
∂Q

∂θ

∂θ

∂τa
(4.2.18)

where we can easily show that

∂p

∂τa
=

1

3
δa,

∂q

∂τa
=

√
3

2

ξa
χ

≡
√

3

2
n̂a,

∂θ

∂τa
≡ θa = −

(
2√
6

csc 3θ

)
ya, (4.2.19)

where δa = 1, and ξa for a = 1, 2, 3 are the eigenvalues of the deviatoric stress tensor ξ.

Additionally,

ya =
∂y

∂τa
= 3

ξ2a
χ3

− 3
tr
(
ξ3
)
ξa

χ5
− δa
χ

, (4.2.20)
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which we use to write qa in more compact form

qa =
1

3
∂pQδa +

√
3

2
∂qQn̂a + ∂θQθa. (4.2.21)

From equations (4.2.9) and (4.2.13), we obtain

∂Q

∂p
= β

∂F

∂p
,

∂Q

∂q
= ζ,

∂Q

∂θ
= ζ

′
q, (4.2.22)

where we have used the volumetric nonassociativity parameter

β := (1 −N) /
(
1 −N

)
. Thus,

qa =
1

3
β∂pFδa +

√
3

2
∂qQn̂a + ∂θQθa, (4.2.23)

from where we clearly see the volumetric and deviatoric nonassociativity in the plastic flow.

Using the above expression for the yield surface, we calculate the derivatives

∂F

∂p
=
η −M

1 −N
,

∂F

∂q
= ζ,

∂F

∂θ
= ζ ′q. (4.2.24)

It is now convenient to evaluate the second derivative of the plastic potential with respect

to the stress tensor, as it will be used in the numerical implementation of the model. Here,

we exploit the uncoupling between the volumetric and deviatoric terms in F and write

qab =
1

9
β∂2

ppFδaδb +

√
3

2
∂qQn̂ab + ∂θQθab + ∂2

θθQθaθb

+

√
3

2
∂2
qθQ (n̂aθb + θan̂b) , (4.2.25)

where, from equations (4.2.24) and (4.2.22), we get

∂2
ppF = − M

1 −N

1

p

(
p

pi

)N/(1−N)

, ∂2
θθQ = ζ

′′
q, ∂2

qθQ = ζ
′
. (4.2.26)

Furthermore, from equations (4.2.19)2,3 we get, respectively,

n̂ab =
1

χ

(
δab −

1

3
δaδb − n̂an̂b

)
and θab = −

(
2√
6

csc 3θ

)
yab − (3 cot 3θ) θaθb,

(4.2.27)
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with

yab = 6
ξaδab
χ3

− 3
tr ξ3

χ5

(
δab −

1

3
δaδb − 5

ξaξb
χ2

)

+
1

χ3
(δaξb + ξaδb) −

9

χ5

(
ξaξ

2
b + ξ2aξb

)
(no sum). (4.2.28)

Reduced dissipation inequality: the second law of thermodynamics

For perfect plasticity, the reduced dissipation inequality requires the stresses to perform

nonnegative plastic incremental work [112], i.e.,

Dp ≡ τ : dp = λ̇τ : q = λ̇
3∑

a=1

τaqa ≥ 0. (4.2.29)

Realizing that
∑3

a=1 τaθa = 0, we can write

Dp = λ̇ (p∂pQ+ q∂qQ) = −λ̇p
(
M − η

1 −N
+ η

)
≥ 0, (4.2.30)

where we have exploited the fact that at yield F = Q = 0. Since −λ̇p ≥ 0 and 1 −N > 0,

we require −Nη + M ≥ 0. Now, for a stress point on the yield surface, the relationship

η/ζ = η/ζ holds, hence,

Dp ≥ 0 ⇒ −MN

N

ζ

ζ

[
1 − (1 −N)

(
p

πi

)N/(1−N)
]

+M ≥ 0. (4.2.31)

It can be seen that the function inside the square brackets is a monotonically decreasing

function and always less than unity for p ∈ [πc, 0], where πc = πi/ (1 −N)(1−N)/N is the

preconsolidation pressure. Therefore, since M > 0 as it is a physical parameter, we get the

condition
(
N ζ

)
/ (Nζ) ≤ 1, which is satisfied at all times if

N ≤ N and ζ ≤ ζ. (4.2.32)

The first condition was already derived by the authors in [122] in the context of two-

invariant plasticity, whereas the second condition is a by-product of the third invariant.

Both restrictions derived above can be linked to the angle of friction and angle of dilation

as N ≤ N implies lower dilatancy than that achieved from a volumetric associative flow
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rule. On the other hand, it is easy to show that the second condition requires ρ ≤ ρ, and

since

ρ ≡ 3 − sinφc
3 + sinφc

and ρ ≡ 3 − sinψc
3 + sinψc

, (4.2.33)

where φc is the angle of internal friction at critical and ψc is the dilatancy angle at critical,

it follows that

ψc ≤ φc, (4.2.34)

which is very much consistent with thermodynamic conditions found for Mohr-

Coulomb or Drucker-Prager materials and experimental observations in geomaterials, see

[110, 111] for further elaboration.

Remark 3. Experimental evidence in granular materials seems to suggest deviatoric nonas-

sociativity in these materials is not pronounced. Lade and Duncan [8] have shown that, for

dense sands, the plastic strain rates are perpendicular to the yield surface on a deviatoric

plane. Nevertheless, the formulation presented above is general and allows for deviatoric

and volumetric nonassociativity.

4.2.3 Maximum plastic dilatancy, hardening law and the consistency con-

dition

We recall the definitions for the volumetric and deviatoric plastic strain rate invariants,

respectively,

ε̇pv = trdp and ε̇ps =

√
2

3
‖dp − 1/3ε̇pv1‖ . (4.2.35)

Using the definitions above and equations (4.2.16)-(4.2.17), and (4.2.21) we get

ε̇pv = λ̇
3∑

a=1

qa and ε̇ps = λ̇

√√√√2

3

3∑

a=1

q̃2a, (4.2.36)

where we have
∑3

a=1 qa = ∂pQ, and q̃a = qa − 1/3∂pQδa. Hence,

ε̇pv = λ̇β∂pF and ε̇ps = λ̇

√
2

3
Ω (q, θ) , (4.2.37)

with

Ω (τ ) = Ω (q, θ) =

√
3

2
(∂qQ)2 + (∂θQ)2

[
θ2
1 + θ2

2 + θ2
3

]
. (4.2.38)
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Now, we recall the definition of plastic dilatancy

D :=
ε̇pv
ε̇ps

=

√
3

2
β
∂pF

Ω
, (4.2.39)

which we can use to obtain the maximum dilatancy and thereby maximum stress ratio η∗

such that

D∗ = αψi =

√
3

2
β
η∗ −M

(1 −N) Ω
. (4.2.40)

After rearranging, we get η∗ =
√

2/3αψi(1 − N)Ω + M , with α = βα and α ≈ −3.5 for

sands. Recall the maximum plastic dilatancy is used to limit the amount of dilation in a sand

specimen on the ‘wet’ side of the critical state line. As in the original model proposed by

Been and Jefferies in [106] and Jefferies in [2], the maximum dilatancy is obtained through

an empirical relation with the state parameter ψi, which is a distance between the specific

volume of the sample and the specific volume at critical at the image pressure i.e.,

ψi = v − vc0 + λ̂ ln (−πi) , (4.2.41)

where v is the specific volume, vc0 is the reference specific volume at unit pressure, and λ̂ is

the plastic compressibility index. All of these parameters emanate from the so-called critical

state theory which postulates the existence of the critical state line. Inserting the above

result into equation (4.2.10) and solving for the corresponding limiting image pressure we

get, cf. [122],

π∗i
p

=





exp
(√

2/3α/MψiΩ
)

if N = N = 0,
(
1 −

√
2/3αψiΩN/M

)(N−1)/N
if 0 ≤ N ≤ N 6= 0.

(4.2.42)

Recall the hardening law, which relates the image pressure with the state of stress, the state

parameter ψi, and the deviatoric component of plastic flow, i.e.,

π̇i = h (π∗i − πi) ε̇
p
s =

√
2

3
hλ̇ (π∗i − πi) Ω, (4.2.43)

where h is a constant material property, to be calibrated in the finite deformation regime.
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Finally, for elastoplasticity the consistency condition necessitates

Ḟ = f : τ̇ −Hλ̇ = 0, λ̇ > 0, (4.2.44)

where f := ∂F/∂τ and H is the so-called hardening modulus defined as

H = − 1

λ̇

∂F

∂πi
π̇i = − 1

λ̇

(
p

πi

)1/(1−N)

Mπ̇i. (4.2.45)

Since p/πi > 0, the sign of the hardening modulus is governed by the sign of the image

pressure rate: H > 0 if π̇i < 0 (expansion of the yield surface, hardening), H < 0 if π̇i > 0

(contraction of the yield surface, softening), and H = 0 if π̇i = 0 (perfect plasticity).

Remark 4. The continuum formulation presented above is a generalization of that presented

in [122]. In fact, when ζ = ζ = 1 ∀ θ ∈ [0, π/3], all derivatives of Q with respect to θ drop

out, and with Ω =
√

3/2 we recover the original two-invariant version of the model.

4.3 Numerical implementation

We perform a numerical stress point integration based on the product formula algorithm

similar to that proposed by Simo in [117]. However, here we perform the return mapping in

the elastic principal stretch directions to accommodate for nonlinear elasticity. Note that

the algorithm provides a closed-form expression for the consistent tangent operator (CTO).

The numerical implementation developed below is summarized in Tables 4.1 and 4.2. Table

4.1 presents a summary of the evolution equations used in the local return mapping, whose

recipe is presented in turn in Table 4.2.

4.3.1 Local return mapping algorithm

Recall the definition of the elastic left Cauchy-Green deformation tensor given in equation

(4.2.2)2. From this expression we obtain the trial elastic left Cauchy-Green deformation

tensor at time station tn+1 by freezing plastic flow i.e.,

be tr ≡ b̃ = fn+1 · be
n · f t

n+1, fn+1 =
∂xn+1

∂xn
. (4.3.1)
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Table 4.1: Summary of rate equations in three-invariant elastoplastic model for sands.

1. Additive velocity gradient: l = le + lp =⇒ d = de + dp

2. Hyperelastic rate equations: Lv (τ ) = ce : de;
ce = 4be · ∂Ψ/ (∂be ⊗ ∂be) · be

3. Nonassociative flow rule: dp = sym lp = λ̇q;
ωp = skw lp = 0

4. State parameter: ψ̇i = v̇ + λ̂π̇i/πi

5. Hardening law: π̇i =
√

2/3hλ̇ (π∗i − πi)Ω

6. Consistency condition: f : τ̇ −Hλ̇ = 0

7. Kuhn-Tucker optimality conditions: λ̇ ≥ 0, F ≤ 0, λ̇F = 0

Using the results presented in [117], the trial elastic deformation tensor can be related to

the elastic deformation tensor via the exponential approximation

be = exp (−2∆λq) · b̃, (4.3.2)

hence, εea = εe tr
a − ∆λqa and where εe tr

a ≡ ε̃a for a = 1, 2, 3. From these results in principal

logarithmic stretches and utilizing the yield criterion, we formulate the residual vector

[111, 122, 131],

r (x) =





εe1 − εe tr
1 + ∆λq1

εe2 − εe tr
2 + ∆λq2

εe3 − εe tr
3 + ∆λq3

F





with x =





εe1

εe2

εe3

∆λ





(4.3.3)
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Table 4.2: Return mapping algorithm for three-invariant elastoplastic model for sands.

1. Elastic deformation predictor: b̃ = fn+1 · be
n · f t

n+1

2. Elastic stress predictor: τ tr = 2∂Ψ/∂b̃ · b̃; πtr
i = πi,n

3. Check if yielding: F
(
τ tr, πtr

i

)
≥ 0?

No, set be = be tr ≡ b̃; τ = τ tr; πi = πtr
i and exit

4. Yes, initialize ∆λ = 0, build residual r (x) and iterate for x (steps 5-8)

5. Spectral decomposition: b̃ =
∑3

a=1 λ̃
2
am

a

6. Plastic corrector in principal logarithmic stretches: εea = lnλe
a;

ε̃a ≡ εe tr
a = ln λ̃a; εea = εe tr

a − ∆λqa; τa = ∂Ψ/∂εea for a = 1, 2, 3

7. Update plastic internal variable πi:

(a) Total deformation gradient: F = fn+1 · F n

(b) Specific volume: v = v0 detF = v0J

(c) Initialize πi = πi,n and iterate for πi (steps 7d-f)

(d) State parameter: ψi = v − vc0 + λ̂ ln (−πi)

(e) Limit hardening plastic variable:

π∗i = p×





exp
(√

2/3α/MψiΩ
)

if N = N = 0,
(
1 −

√
2/3αψiΩN/M

)(N−1)/N
if 0 ≤ N ≤ N 6= 0.

(f) Plastic internal variable: πi = πi,n +
√

2
3h∆λ (π∗i − πi)Ω

8. Discrete consistency condition: F (p, q, θ, πi) = 0

9. Spectral resolution: be =
∑3

a=1 λ
e 2
a ma
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as the vector of local unknowns. The Newton-Raphson scheme necessitates the Jacobian

r′ (x) =




1 + ∆λ∂q1/∂ε
e
1 ∆λ∂q1/∂ε

e
2 ∆λ∂q1/∂ε

e
3 q1 + ∆λ∂q1/∂∆λ

∆λ∂q2/∂ε
e
1 1 + ∆λ∂q2/∂ε

e
2 ∆λ∂q2/∂ε

e
3 q2 + ∆λ∂q2/∂∆λ

∆λ∂q3/∂ε
e
1 ∆λ∂q3/∂ε

e
2 1 + ∆λ∂q3/∂ε

e
3 q3 + ∆λ∂q3/∂∆λ

∂F/∂εe1 ∂F/∂εe2 ∂F/∂εe3 ∂F/∂∆λ




.

(4.3.4)

The local tangent operator is fully defined once the quantities ∂qa/∂ε
e
b, ∂qa/∂∆λ, ∂F/∂εea

for a, b = 1, 2, 3, and ∂F/∂∆λ are thoroughly computed. We compute these essential

derivatives in what follows.

Let us start by calculating the gradient

∂qa
∂εeb

= qaca
e
cb +

∂qa
∂πi

∂πi

∂εeb
, (4.3.5)

where ae
ab := ∂τa/∂ε

e
a is the elastic continuum tangent operator in principal directions.

Also, we have

∂qa
∂πi

=
1

3
β
∂2F

∂p∂πi
δa,

∂2F

∂p∂πi
=

1

1 −N

M

p

(
p

πi

) 1
1−N

. (4.3.6)

The last term of equation (4.3.5) is furnished by the hardening law, which we recall from

equation (4.2.43) and then integrate with a Backward Euler scheme to get

πi = πi,n +

√
2

3
h∆λ (π∗i − πi) Ω, (4.3.7)

where πi,n is the converged value of the image pressure at the previous time step tn. There-

fore,

(
1 +

√
2

3
h∆λΩ

)
∂πi

∂εeb
=

√
2

3
h∆λ

[(
∂π∗i
∂τa

ae
ab +

∂π∗i
∂ψi

∂ψi

∂εeb

)
Ω + (π∗i − πi)Ωaa

e
ab

]
, (4.3.8)

where we have

∂π∗i
∂τa

=
1

3

π∗i
p
δa + (1 −N)

π∗i
M −

√
2/3αψiΩN

√
2

3
αψiΩa (4.3.9)

and

Ωa =
1

Ω

[
3

2
ζ ζ

′
θa + ζ

′
q
(
ζ
′′
θaq + ζ

′√
3/2n̂a

)
θ2
cδc +

(
ζ
′
q
)2
θcθca

]
. (4.3.10)
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Finally, recalling the definition of ψi we get

∂π∗i
∂ψi

=

√
2

3
αΩ(1 −N)

π∗i
M −

√
2/3αψiΩN

and
∂ψi

∂εeb
=
λ̂

πi

∂πi

∂εeb
. (4.3.11)

Therefore,

∂πi

∂εeb
= c−1

√
2

3
h∆λ

[
Ω
∂π∗i
∂τa

+ (π∗i − πi) Ωa

]
ae
ab, (4.3.12)

where c = 1 +
√

2/3h∆λΩ(1 − λ̂/πi∂π
∗
i /∂ψi).

It is only left for us to evaluate the derivatives ∂qa/∂∆λ, ∂F/∂εeb, and ∂F/∂∆λ. By the

chain rule, we have

∂qa
∂∆λ

=
∂qa
∂πi

c−1

√
2

3
hΩ(π∗i − πi)

︸ ︷︷ ︸
∂πi/∂∆λ

. (4.3.13)

Finally, we compute

∂F

∂εeb
= faa

e
ab +

∂F

∂πi

∂πi

∂εeb
and

∂F

∂∆λ
=
∂F

∂πi

∂πi

∂∆λ
, (4.3.14)

where

fa ≡
∂F

∂τa
=

1

3
∂pFδa +

√
3

2
∂qFn̂a + ∂θFθa and

∂F

∂πi
= M

(
p

πi

)1/(1−N)

. (4.3.15)

In addition to the above local iterative scheme, one sub-local scheme is necessary to

solve for πi as it is a nonlinear function of the state of stress, and the state parameter ψi.

This is easily accomplished by introducing the scalar residual

r (πi) = πi − πi,n −
√

2

3
h∆λ (π∗i − πi) Ω, (4.3.16)

with the scalar tangent operator

r′ (πi) = 1 +

√
2

3
h∆λΩ

(
1 − λ̂

πi

∂π∗i
∂ψi

)
. (4.3.17)

Once the sub-local loop is finished and a value for πi is obtained, then ψi and π∗i can be

evaluated and the solution algorithm can proceed to the local Newton-Raphson scheme

presented above.
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4.3.2 Consistent tangent in principal directions

Let us start by deriving the elastic tangent in principal directions ae
ab. Recall the hyperelastic

formulation presented in subsection 4.2.1. We have the strain energy function Ψ (εev, ε
e
s) from

which the Kirchhoff stress tensor is obtained such that

τa = 2
∂Ψ

∂λe 2
a

λe 2
a =

∂Ψ

∂εea
=

1

3
pδa +

√
2

3
qn̂a (no sum), (4.3.18)

where we have used the definitions p = ∂Ψ/∂εev and q = ∂Ψ/∂εes . Hence,

ae
ab = Keδaδb + 2µe

(
δab −

1

3
δaδb

)
+

√
2

3
de (δan̂b + n̂aδb) , (4.3.19)

where Ke := ∂p/∂εev is the elastic bulk modulus, 3µe := ∂q/∂εes where µe is the elastic shear

modulus, and de := ∂2Ψ/(∂εev∂ε
e
s).

Now, let us define ãep
ab := ∂τa/∂ε̃b as the consistent tangent in principal directions,

which we can evaluate with the help of the converged local residual vector via the chain

rule. Specifically,

ãep
ab = ae

aca
p
cb with ap

cb ≡
∂εec
∂ε̃b

. (4.3.20)

We can then recall the converged local residual vector r (x) = 0 and by the chain rule

obtain
∂xi
∂ε̃a

= −bij
∂rj
∂ε̃a

∣∣∣∣
x

, (4.3.21)

where b := [r′]−1 and therefore

ap
ab = bac

(
δcb − ∆λ

∂qc
∂ε̃b

∣∣∣∣
x

)
− ba4

∂F

∂ε̃b

∣∣∣∣
x

for a, b, c = 1, 2, 3. (4.3.22)

We also have
∂qa
∂ε̃b

∣∣∣∣
x

=
∂qa
∂πi

∂πi

∂ε̃b

∣∣∣∣
x

and
∂F

∂ε̃b

∣∣∣∣
x

=
∂F

∂πi

∂πi

∂ε̃b

∣∣∣∣
x

, (4.3.23)

where
∂πi

∂ε̃a

∣∣∣∣
x

= c−1

√
2

3
h∆λΩv

∂π∗i
∂ψi

δa. (4.3.24)

We note that in the special case of pure elasticity, the tangent ap
ab ≡ δab and thus, ãep

ab ≡ ae
ab.

It will be shown in the next section, that the consistent tangent in principal directions

contributes to the global consistent tangent operator, which for this particular class of
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return mapping algorithm can be obtained in closed-form.

4.4 Consistent tangent operators in spectral form based on

Lie derivatives

It is generally recognized that a consistent linearization of the so-called weak form of

balance of linear momentum is critical for optimal performance of an iterative algorithm

[124, 132, 133]. In particular, in the presence of nonlinear kinematics the concept of direc-

tional derivatives plays a key role in the linearization process. We proceed to developing

the CTO for the case of elastoplasticity. For the elastoplastic formulation, isotropy (i.e.,

Ψ = Ψ (λe
1, λ

e
2, λ

e
3)) furnishes a connection between the elastic and trial kinematical quanti-

ties and consequently, it is a crucial component in our developments. The result hinges on

two main results.

Proposition 1. The Kirchhoff stress tensor can be obtained using the trial elastic left

Cauchy-Green deformation tensor be tr ≡ b̃ := F̃ · F̃ t
, i.e.,

τ = 2
∂Ψ̃

∂b̃
· b̃, (4.4.1)

where F e tr ≡ F̃ =
∑3

a=1 λ̃an
a ⊗ Na is the trial elastic deformation gradient.

Proof. By definition,

τ = 2
∂Ψ (be)

∂be · be. (4.4.2)

We also know that we can decompose b̃ and be spectrally and get, respectively

b̃ =
3∑

a=1

λ̃2
am

a and be =
3∑

a=1

λe 2
a ma, (4.4.3)

where we note the fact that the tensors b̃ and be have the same eigenvectors, a by-product

of the return mapping algorithm. Then we use equations (4.4.2) and (4.4.3) along with the

chain rule and write

τ = 2

3∑

a=1

∂Ψ̃

∂λ̃2
a

∂λ̃2
a

∂λe 2
a

λe 2
a ma = 2

3∑

a=1

∂Ψ̃

∂λ̃2
a

λ̃2
a

λe 2
a

λe 2
a ma = 2

∂Ψ̃

∂b̃
· b̃, (4.4.4)
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where we have exploited the algorithmic relationship between λe
a and λ̃a (cf. equation

(4.5,b) in [117]) and the isotropy of the strain-energy function.

Proposition 2. Define the trial elastic right Cauchy-Green deformation tensor C̃ := F̃
t ·

F̃ =
∑3

a=1 λ̃
2
aM

a, then

τ = 2
∂Ψ̃

∂b̃
· b̃ = 2F̃ · ∂Ψ̃

∂C̃︸︷︷︸
:=1/2S̃

·F̃ t
= F̃ · S̃ · F̃ t

. (4.4.5)

Proof. This is a standard result in continuum mechanics, but we will prove it here for

completeness. We start by taking the time derivative of the strain-energy function

˙̃Ψ =
∂Ψ̃

∂b̃
:
˙̃
b =

∂Ψ̃

∂C̃
: ˙̃
C

= 2

[
∂Ψ̃

∂b̃
· F̃
]

: ˙̃
F = 2

[
F̃ · ∂Ψ̃

∂C̃

]
: ˙̃
F , (4.4.6)

where we have exploited the symmetries of b̃ and C̃, the isotropy of Ψ̃ , and the chain

rule. Consequently, since the expression above must hold for all F̃ , we conclude ∂Ψ̃/∂b̃ =

F̃ · ∂Ψ̃/∂C̃ · F̃−1
, from where equation (4.4.5) follows.

With equations (4.4.1) and (4.4.5), it is then easy to obtain a closed form expression

for the CTO by utilizing the spectral decomposition approach along with the relationship

between the material time derivative and the Lie derivative of the Kirchhoff stress tensor.

We start by taking the material time derivative of the Kirchhoff stress tensor

τ̇ =
d

dt

(
F̃ · S̃ · F̃ t

)

τ̇ = ˙̃
F · S̃ · F̃ t

+ F̃ · S̃ · ˙̃
F t + F̃ · ∂S̃

∂C̃︸︷︷︸
:=Ã

: ˙̃
C · F̃ t

. (4.4.7)

It is then necessary to explicate all three terms above. We recall F̃ = F · F p−1
n and thus

˙̃
F = Ḟ · F p−1

n = l · F̃ , where F p
n is the plastic deformation gradient at time tn. Using this

result, we can calculate

˙̃
C = F̃

t · l · F̃ + F̃
t · lt · F̃ = 2F̃

t · d · F̃ . (4.4.8)
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It is now possible to rewrite equation (4.4.7) as

τ̇ = l · τ + τ · lt + c̃ : d (4.4.9)

where we identify Lv (τ ) = c̃ : d and

c̃ijkl = 2F̃iI F̃jJ F̃kK F̃lLÃIJKL. (4.4.10)

It is clear that since Ψ̃ = Ψ̃
(
λ̃1, λ̃2, λ̃3

)
, then it follows that S̃ =

∑3
a=1 S̃aM

a and C̃ =
∑3

a=1 λ̃
2
aM

a are coaxial and consequently

Ã =
3∑

a=1

3∑

b=1

∂S̃a

∂λ̃2
b

Ma ⊗ M b +
1

2

3∑

a=1

∑

b 6=a

S̃b − S̃a

λ̃2
b − λ̃2

a

(
Mab ⊗ Mab + Mab ⊗ M ba

)
(4.4.11)

and therefore, by pushing Ã forward with equation (4.4.10) and using the fact that λ̃2
aS̃a =

τa we obtain

c̃ =
3∑

a=1

3∑

b=1

(
ãep
ab − 2τaδab

)
︸ ︷︷ ︸

:=c̃ab

ma ⊗ mb +
3∑

a=1

∑

b 6=a

τbλ̃
2
a − τaλ̃

2
b

λ̃2
b − λ̃2

a︸ ︷︷ ︸
:=γ̃ab

(
mab ⊗ mab + mab ⊗ mba

)

(4.4.12)

where ãep
ab := ∂τa/∂ε̃b, ε̃b := ln λ̃b, and where Ma := Na⊗Na, Mab := Na⊗N b and mab :=

na⊗nb. We observe from equation (4.4.12) that the CTO possesses minor symmetries but

lacks major symmetry if ãep
ab 6= ãep

ba, which is certainly the case for non-associative plasticity

or when the integration algorithm destroys the symmetry of the tangent operator [66, 134].

4.5 Search algorithm in principal stress space

Consider the expression for the total tangent operator i.e., aep = cep + τ ⊕ 1, where the

elastoplastic tangent operator is form-identical to the CTO derived above, namely,

cep =
3∑

a=1

3∑

b=1

cepabm
a ⊗ mb +

3∑

a=1

∑

b 6=a

γab

(
mab ⊗ mab + mab ⊗ mba

)
. (4.5.1)
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We use this operator in defining the Eulerian acoustic tensor for nonlinear kinematics [64]

Aik ≡ nja
ep
ijklnl, (4.5.2)

where ni for i = 1, 2, 3 are the components of the unit vector n normal to an impending

shear band in the current configuration. Since the principal directions of the stress tensor

τ span R
3, we can construct any vector as a linear combination of these eigenvectors.

Specifically,

n =
3∑

a=1

αan
a (4.5.3)

which we can then combine with (4.5.2) and (4.5.1) to get the spectral components of the

acoustic tensor

Âab =

{
α2
ac

ep
aa + σ +

∑
c 6=a α

2
cγca if a = b

αa
(
cepab + γab

)
αb if a 6= b

(no sum) (4.5.4)

where σ := n · τ · n is the component of the stress tensor normal to the shear band and

Âab := na · A · nb are the components of the acoustic tensor in principal direction basis.

We recall that a necessary condition for localization is [29, 64, 122],

F (A) = inf |n det (A) = 0. (4.5.5)

Note that the determinant of a second order tensor is an invariant quantity under rotations

i.e., det(A) = det(Â), so this allows us to use the spectral form of the acoustic tensor only.

Defining f = det(Â), the localization condition can be rewritten in the equivalent form

∂f

∂αa
= 0, a = 1, 2, 3 (4.5.6)

which provides three optimality conditions that need to be satisfied in order to obtain

a local minimum. We can further reduce the number of unknowns by introducing the

spherical coordinates (θ,φ,‖n‖2) in principal space (see Figure 4.2). We require ‖n‖2 ≡ 1,

which introduces a trivial constraint on the system. Some algorithms use this constraint in

the framework of Lagrange multipliers to solve for F (e.g. see Ortiz et al. [51]).
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q

f

n
1

n
2

n
3

n
R

3

Figure 4.2: Reference frame in principal directions basis.

From Figure 4.2, we have the coordinate relations

α1 = sin θ sinφ, α2 = cosφ, α3 = cos θ sinφ. (4.5.7)

We can then use these relations to rewrite the localization condition by defining the vector

β = {θ, φ}t, and by the chain rule,

∂f

∂βi
=

3∑

a=1

∂f

∂αa

∂αa
∂βi

= 0, i = 1, 2. (4.5.8)

Due to the highly nonlinear nature of the optimality conditions in equation (4.5.8), we

resort to a Newton-Raphson iterative procedure by expanding the residual around a previous

iteration and equating it to zero i.e.,

∂f

∂β

∣∣∣∣
k+1

≈ ∂f

∂β

∣∣∣∣
k

+
∂2f

∂β∂β

∣∣∣∣
k

·
(
βk+1 − βk

)
︸ ︷︷ ︸

:=∆β

= 0 (4.5.9)

and hence

∆β = −
(

∂2f

∂β∂β

)−1

k

· ∂f
∂β

∣∣∣∣
k

. (4.5.10)

The first approximation β0 is furnished by a coarse sweep over half a unit ball i.e., [0, π]×
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[0, π], where the global minimum of the function f is attained.

Now, it remains to explicate the right hand side of equation (4.5.10). Using the fact

that ∂ det(Â)/∂Â = det(Â)Â
−t

, along with the chain rule, we get

∂f

∂β
= fÂ

−t
:
∂Â

∂α
· ∂α

∂β
(4.5.11)

where ∂Â/∂α is a third-order tensor with components (cf. equation (4.5.4))

∂Âab
∂αc

=





2αaδacc
ep
aa + 2αcτc + 2αcγca︸ ︷︷ ︸

c 6=a

if a = b

δac
(
cepab + γab

)
αb + αa

(
cepab + γab

)
δbc if a 6= b

(no sum), (4.5.12)

with δab being the Kronecker delta. Further, the components of the matrix ∂α/∂β can be

easily computed to yield

∂α

∂β
=




∂θα1 ∂φα1

∂θα2 ∂φα2

∂θα3 ∂φα3


 . (4.5.13)

The Jacobian matrix can be calculated with the aid of the chain rule as

∂2f

∂β∂β
=
∂α

∂β
· J · ∂α

∂β
+
∂f

∂α
· ∂2α

∂β∂β
, (4.5.14)

where

J = f

[(
Â

−t
:
∂Â

∂α

)
⊗
(

Â
−t

:
∂Â

∂α

)
− ∂Â

∂α
: Â

−t ⊖ Â
−1

:
∂Â

∂α
+ Â

−t
:
∂2Â

∂α∂α

]
.

(4.5.15)

Finally, the fourth order tensor ∂2Â/(∂α∂α) can be written in component form as

1

2

∂Âab
∂αc∂αd

=





δacδbdc
ep
aa + δcdτc + δcdγca︸ ︷︷ ︸

c 6=a

if a = b

(
cepab + γab

)
Iabcd if a 6= b

(no sum), (4.5.16)

where Iabcd = 1/2 (δacδbd + δadδbc) is the fourth-order identity tensor.

Note that the tensors presented in equations (4.5.12,4.5.16) are very sparse, thus making

the assembly of the residual vector and the Jacobian matrix very straightforward. Also, the

Hessian matrix in (4.5.16) is only calculated once in the algorithm as it is not a function
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of the αa’s. At this point, it is easy to recognize the importance of the fact that since the

algorithm is based on Newton-Raphson scheme, asymptotic quadratic rate of convergence

is achieved and as a result the algorithm only needs to iterate a few times to find the global

minimum, provided, of course, that the first guess is close enough to the solution.

It has been shown by several researchers that for a wide class of elastoplastic models, at

least one of the αa’s is zero and therefore the search only needs to take place on the principal

planes [29, 35, 135, 136]. For example, classical models such as von-Misses, Drucker-Prager,

and Mohr-Coulomb can all be shown to localize within one of the principal planes, even for

the case of finite strains, provided a suitable form of the elastic continuum tangent is utilized

(isotropic). Also, the infinitesimal version of the elastoplastic model presented herein can

be shown to belong to the class of constitutive models described above. Due to the spectral

nature of the algorithm presented here, the on-plane feature is easily activated, thus making

the search very efficient. This feature is not present in some of the previously proposed

search algorithms available in the literature, see for example the works by Ortiz et al.

[51] and Mosler [137], which always perform fully three-dimensional searches. Simulations

underscoring the main features of the algorithm such as asymptotic quadratic rate and the

on-plane feature are included in the Numerical examples section.

Remark 5. Note that the formulation presented above is general and applicable to models

with linear and nonlinear kinematics. The same algorithm can be easily utilized for the

case of infinitesimal deformations provided that the stress terms are set identically equal to

zero, for example.

Remark 6. As pointed out first in [114], the consistent tangent operator can be used in lieu

of its continuum counterpart to search for the necessary condition for localization, provided

a small enough load step is taken. This can be accomplished, in light of the above described

search algorithm, by replacing cepab with c̃ab and γab with γ̃ab. It is very convenient to use the

algorithmic operator as it is already available from the material subroutine and therefore

the continuum tangent is not to be used explicitly.

4.6 Numerical examples

In this section we conduct local stress-point simulations to illustrate the main features of the

three-invariant constitutive formulation developed in this work. Localization analyses are

conducted at this level and the convergence profile of the search algorithm for the minimum
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determinant is reported. Then, a series of boundary-value problems at the finite element

level are performed with the objective of studying the behavior of granular bodies exhibiting

unstructured random density fields. The simulations focus on detecting bifurcation and no

effort is made to try to capture post-bifurcation behavior. Hence all simulations are stopped

once bifurcation is detected.

4.6.1 Stress-point simulations

At the stress-point level, we performed two strain-driven simulations to highlight the dif-

ference in the responses resulting from the inclusion of the third stress invariant and to test

the performance of the search algorithm for the minimum value of the localization function.

Two material points with identical properties, except for the ellipticity parameters ρ and ρ,

were strained until they reached localization. The hyperelastic parameters are as follows:

compressibility coefficient κ̂ = 0.01; reference elastic volumetric strain εev 0 = 0 at a refer-

ence pressure p0 = −100 kPa; initial shear modulus µ0 = 5400 kPa; and coupling constant

α0 = 0 (see section 4.2.1 for notation). The plasticity parameters are: plastic compress-

ibility coefficient λ̂ = 0.0135; critical state parameter M = 1.2; shape parameters N = 0.4

and N = 0.2 (nonassociative volumetric plastic flow); and hardening constant h = 280 (see

section 4.2.2 for notation). Both material points were initially denser than critical with

an initial specific volume v = 1.59 and a reference specific volume vc0 ≈ 1.81. The only

difference in material properties is the ellipticity: one material point had ρ = ρ = 1 (two-

invariant formulation, circular cross-section and associative flow on the deviatoric plane)

and the other had ρ = 0.7 and ρ = 0.8 (non-circular, convex cross-section, nonassociative

flow on deviatoric plane). Both material points were modeled using the Willam-Warnke

shape function in equation (4.2.12).

The loading protocol is as follows. We prescribed two equal sets of relative deformation

gradient fn+1 = ∂xn+1/∂xn: the first set was prescribed over n1 steps, followed by the

second for n2 steps until localization was reached. The two relative deformation gradients

are

f1 =




1 + λ2 0 0

0 1 − λ1 0

0 0 1


 and f2 =




1 0 0

0 1 − λ2 0

0 0 1 + λ1


 , (4.6.1)
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Figure 4.3: Stress paths on meridian plane. Yield surfaces expand from A to B and to C
whereas stress paths follow O–A′–B′–C ′ trajectory.

hence, the total deformation gradient is

F = fn2

2 · fn1

1 , (4.6.2)

where λ1 = 1×10−3 and λ2 = 4×10−4. The material points were mostly compressed in the

first n1 = 10 steps, and then mostly stretched in the subsequent n2 steps, hence the total

number of steps is given by n = n1 + n2. The stress paths followed by the two material

points are shown in Figures 4.3 and 4.4, with Figure 4.3 showing the stress paths on a

meridian plane and Figure 4.4 showing them on a deviatoric plane. The paths are plotted

using rotated principal stress axis as described in [111]. The trajectories followed by the

two stress points are similar. The stress paths started at point O and then were loaded

to point A′ after the first n1 steps, and subsequently deformed to points B′ and C ′, where

they localized. Similarly, the yield surfaces expanded from A to B to C, without softening.

The sample with ρ = 0.7 localized first at n = 22, whereas the sample with ρ = 1

localized at n = 26. The function F (A) for both stress points is plotted in Figure 4.5

where we see minor differences in the trajectories, yet the stress point with ρ = 0.7 localized

sooner. Hence, the third invariant enhances strain localization. The values for the function
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F (A) are obtained by the search algorithm outlined in Section 4.5 by sweeping the R
3

space via the angles θ and φ. One such a profile swept by the search algorithm is shown

in Figure 4.6, where the determinant of the acoustic tensor is plotted as a function of θ

and φ at the onset of localization for the material point with ρ = 0.7. One such profile is

swept at each time step where the search algorithm finds one of usually two wells and then

returns a solution. One interesting note from Figure 4.6 is that localization was achieved

at φ = π/2 (see end of section 4.5 for discussion). Finally, the convergence profile for the

search algorithm at various load steps is reported in Figure 4.7 where optimal quadratic

convergence is observed.

4.6.2 Simulations with cubical specimens

Randomization of the density field in a specimen is achieved through the void ratio e,

defined as the ratio between the volume occupied by empty voids and the intrinsic volume

of the solid phase, i.e., e := Vv/Vs. The main issue concerns finding a plausible probability

density function describing the natural dispersion of voids in a sample of granular materials.

Shahinpoor [138] used statistical mechanical theory on a collection of Voronoi cells to obtain

an exact expression for the probability density function for the distributions of void ratio
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in a random aggregate of granular material. The probability distribution function for e was

established to be a truncated exponential distribution. It also has been used by Nübel and

Huang [19] to study localized deformation patterns in granular media.

Here, we adopted a truncated exponential density function for e of the form

fe(e) =
γ exp (−γe)

exp (−γed) − exp (−γel)
, (4.6.3)

where ed is the lower bound of the distribution corresponding to the densest state, el is the

upper bound of the distribution corresponding to the loosest state, and γ plays the role of a

fitting parameter. We used these bounds to restrict the amount of dispersion in the density

of the sample, thus controlling the amount of inhomogeneities. The expected value of the

distribution is given by [139]

e =

∫ el

ed

efe (e) de, (4.6.4)

where

e =
1

γ
+
ed exp(−γed) − el exp(−γel)

exp(−γed) − exp(−γel)
, (4.6.5)

Hence, we can prescribe the expected value or mean void ratio e subject to the upper and

lower bounds ed and el, respectively, provided we solve for the fitting coefficient γ. This is
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easily accomplished by a Newton-Raphson scheme on the residual

r (γ) = e− 1

γ
− ed exp(−γed) − el exp(−γel)

exp(−γed) − exp(−γel)
. (4.6.6)

The random density field was then generated on the assumption that the values of void

ratio in space are mutually independent. For this reason, these random fields are called

“unstructured” due to the lack of correlation in the density field between points A and B

in the same sample.

We then sheared in compression two rectangular specimens with dimensions 1×1×2 m

and assumed to behave according to the constitutive framework presented above, up to the

onset of localization. The material properties for both specimens were identical to those of

the stress-point with ρ = ρ = 0.78 and vc0 ≈ 1.85 discussed in the previous section. The

Argyris-Gudehus shape function given in equation (4.2.11) was utilized in the simulations.

At the structural level the density field was generated using the exponential distribution

described above with a mean void ratio e = 0.63 and lower and upper bounds ed = 0.54

and el = 0.64, respectively. Hence, the two specimens, which we will call ‘INHOMOGE-

NEOUS 1’ and ‘INHOMOGENEOUS 2’ for identification purposes, represent two different

realizations of the same distribution function for the void ratio field, with otherwise identi-

cal mechanical properties. Figure 4.8 shows the discretized specimens with their respective

initial specific volume field v := 1+e. The rectangular domains were discretized using 2000

trilinear hexahedral elements equipped with the B-bar method for nonlinear kinematics

using the so-called mean dilation technique [120, 121] (see [119] for a survey on the B-bar

method).

The boundary conditions applied to the specimens were as follows. All four lateral faces

were initially subjected to a constant confining pressure of 100 kPa (Newman BCs). The

bottom and top faces of the specimens (z = 0, 1 m) were supported by rollers with a pin

at the (0, 0, 0)m point for stability (Dirichlet BCs). The bottom face was constrained from

displacement in the z-direction, whereas the top face was subjected to a vertical displace-

ment responsible for shearing the samples in compression. The samples were loaded in two

phases. Phase one, an all-around confining pressure was applied to consolidate the sample

followed by phase two, where the top face was displaced vertically. The objective of this

loading protocol, favoring homogeneous deformations in perfectly homogeneous samples, is

twofold: to observe if any significant differences are introduced by perturbing the density
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Figure 4.8: Initial specific volume field and finite element discretization for inhomogeneous
rectangular specimens.

field by comparing the homogeneous response against perturbed responses from the samples

shown in Figure 4.8, and to compare the responses of two inhomogeneous samples from two

realizations of the density field. To this end, a homogeneous sample with constant void

ratio v = 1.63 was subjected to the same BCs described above, and its response compared

against its inhomogeneous counterparts.

Figure 4.9 shows the contours of the function F (A), for both inhomogeneous samples,

superimposed on the deformed mesh at the onset of localization. Here, we define localization

when one or more Gauss points have detected the first negative incursion of the function

F (A) (even though contours appear as positive due to averaging necessary for plotting).

Both inhomogeneous samples localized at a nominal axial strain of around 5.8%, yet, from

Figure 4.9, we observe that the deformation patterns and the inclinations of the impending

shear bands are conjugate to each other, almost looking as mirror images. This same trend is

observed in Figure 4.10 which compares the contours of the total deviatoric strain invariant

on both inhomogeneous samples. Comparing Figures 4.9 and 4.10, note a strong correlation

between the vanishing of the determinant of the acoustic tensor and the localized values of

the deviatoric component of deformation (shear strains).

Figure 4.11 shows the nominal axial stress as a function of the nominal axial strain for
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Figure 4.11: Nominal axial stress response for rectangular specimens.

both inhomogeneous specimens and their homogeneous counterpart. We see a close agree-

ment in the global responses up to about 4% nominal axial strain, where the inhomogeneous

responses softened and eventually localized at 5.8% strain. The homogeneous sample, how-

ever, underwent very little softening and in fact continued to harden. The change in volume

experienced by the heterogeneous and homogeneous samples are compared in Figure 4.12.

Unlike Figure 4.11, the responses seem identical throughout the duration of the simulations.

Note that the samples compacted first, and then dilated. This trend is very common in

dense sands.

From these simulations we conclude that perturbations in the density field via inhomo-

geneities at the meso-scale tend to trigger the onset of localization. Also, as we compare

the responses of two nearly identical inhomogeneous samples, we observe localization pat-

terns that are conjugate of each another. The mechanical responses of the heterogeneous

samples in the early stages of deformation are very similar to those of their homogeneous

counterpart, suggesting that we can calibrate the meso-scale model parameters from global

specimen responses during the early stages of loading.
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Figure 4.12: Volume change response for rectangular specimens.

4.6.3 Simulations with cylindrical specimens

Next, two inhomogeneous cylindrical specimens exhibiting random unstructured density

fields were loaded in biaxial compression with BCs (and geometry) that emulated ‘triaxial’

testing in the laboratory. Both specimens are 2 m in diameter and 4 m tall. The elastoplastic

properties of these specimens are identical to those in the simulations with cubical specimens

described above. However, here we used two different density fields to simulate the effects

of increasing the spread in the random field on the localization properties of dense sand

samples. To this end, the first inhomogeneous sample, which we call ‘INHOMO 1.58-1.61’,

has a density field such that e = 0.59, with lower and upper bounds ed = 0.58 and el = 0.61,

representing a relatively narrow distribution of void ratio. As for the second sample, we

increased the spread in the void ratio field while keeping the mean constant, i.e., e = 0.59,

with lower and upper bounds ed = 0.56 and el = 0.68. We will call this specimen ‘INHOMO

1.56-1.68’. Figure 4.13 displays the initial specific volume field superimposed on the original

configuration for both inhomogeneous samples. The cylindrical domains were discretized

using 1280 eight-node brick elements equipped with the B-bar method.

As for the BCs, the specimens were biaxially loaded with a confining pressure applied on

the sleeve of the cylinders (Neumann BC) while the top and bottom faces were supported
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Figure 4.13: Initial specific volume field and finite element discretization for inhomogeneous
cylindrical specimens.

on rollers (Dirichlet BC). The point (0, 0, 0)m in the specimens was supported by a pin for

stability. As in the rectangular specimen simulations, the bottom face was constrained to

move vertically while the top face was compressed to mimic a homogeneous deformation.

The samples were then loaded as before, with an initial confining pressure of 100 kPa

followed by axial compression from the top face until localization was detected.

Figures 4.14 and 4.15 show an ‘X-ray’ rendering of the deviatoric strain invariant and the

function F (A), respectively, superimposed on different cut-planes in the deformed configu-

ration for the ‘INHOMO 1.58-1.61’ sample. The sub-figures on the right show longitudinal

panels while the sub-figures on the left show axial planes. Note a localized area of intense

shearing going from the top-right to the bottom-left corner, compared with the rest of the

sample that experienced lower values of shear strains. Similar trends were observed on the

‘INHOMO 1.56-1.68’ sample.

Figures 4.16 and 4.17 show nearly identical plots of the overall axial stress-axial strain

and volumetric strain-axial strain for both inhomogeneous samples and their homogeneous

counterpart with e = 1.59. The inhomogeneous samples localized at different instants

whereas the homogeneous sample did not localize at all. Sample ‘INHOMO 1.56-1.68’

localized at 4.38% whereas ‘INHOMO 1.58-1.61’ localized at 4.76%. The global convergence
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Figure 4.16: Nominal axial stress response for cylindrical specimens.

profile for the sample ‘INHOMO 1.56-1.68’ is reported in Figure 4.18, showing optimal rate

of convergence.

4.7 Closure

We have presented a critical state plasticity model that utilizes all three invariants of the

stress tensor for deformation and strain localization analyses of granular materials with

random unstructured density at the meso-scale. For the implementation we have used

the classical return mapping algorithm in the direction of the elastic logarithmic principal

stretches. An iterative algorithm based on Newton’s method was shown to deliver optimal

performance. We also have presented a search algorithm for the minimum determinant of the

acoustic tensor on the elastic principal stretch planes. Boundary-value problems mimicking

soil samples have been analyzed using a truncated exponential distribution to generate

random and unstructured density fields. Results of numerical simulations suggest that

inhomogeneities tend to trigger strain localization, with heterogeneous samples localizing

when their equivalent homogeneous counterparts would not. Results of the studies also

suggest that heterogeneity in the density field tends to enhance and accelerate the onset of

strain localization, even if the initial global deformation responses of a homogeneous sample
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Figure 4.17: Volume change response for cylindrical specimens.
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Figure 4.18: Convergence profile for finite element solution at various load steps.
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and its heterogeneous counterpart appear to be the same. The framework presented in this

paper is useful for investigating strain localization phenomena in heterogeneous granular

materials at a finer scale.
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Chapter 5

Modeling deformation banding in

dense and loose fluid-saturated

sands

This Chapter will be published in: J. E. Andrade and R. I. Borja. Modeling deformation

banding in dense and loose fluid-saturated sands. Finite Elements in Analysis and Design,

2006. In review for the 18th Annual Melosh Competition Special Issue.

Abstract

Balance of mass and linear momentum of a solid-fluid mixture furnish a complete set of

equations from which the displacements of the solid matrix and the pore pressures can be

resolved for the case of quasi-static loading, resulting in the so-called u − p Galerkin for-

mulation. In this work, a recently proposed model for dense sands is utilized to model the

effective stress response of the solid matrix appearing in the balance of linear momentum

equation. In contrast with other more traditional models, inherent inhomogeneities in the

porosity field at the meso-scale are thoroughly incorporated and coupled with the macro-

scopic laws of mixture theory. Also, the hydraulic conductivity is naturally treated as a

function of the porosity in the solid matrix, allowing for a more realistic representation of

the physical phenomenon. The aforementioned balance laws are cast into a fully nonlin-

ear finite element program utilizing isoparametric elements satisfying the Babuška-Brezzi

107
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stability condition. Criteria for the onset of localization under locally drained and locally

undrained conditions are derived and utilized to detect instabilities. Numerical simulations

on dense and loose sand specimens are performed to study the effects of inhomogeneities

on the stability of saturated porous media at the structural level.

5.1 Introduction

Deformation banding is one of the most common failure modes in geomaterials such as rock,

concrete, and soil. It is well known that appearance of bands of intense localized deformation

significantly reduces the load-carrying capacity of any structure that develops them [20,

140]. Furthermore, when dealing with fluid-saturated geomaterials, the interplay between

the contraction/dilation of pores and development of pore fluid pressures is expected to

influence not only the strength of the solid matrix but also its ability to block or transport

such fluids [12]. Accurate and thorough simulation of these phenomena (i.e., deformation

banding and fluid flow) requires numerical models capable of capturing fine-scale mechanical

processes such as mineral particle rolling and sliding in granular soils and the coupling

between porosity and relative permeability. Until recently, these processes could not even

be observed in the laboratory. Numerical models could only interpret material behavior as

a macroscopic process and were, therefore, unable to model the very complex behavior of

saturated geomaterials accurately.

In this paper, we study the deformation-diffusion behavior of a two-phase system of

soil and fluid. It is well known that the coupling between the mechanical behavior of the

underlying drained solid and the fluid flow can lead to sharply distinct behavior of the over-

all mixed system. For instance, dilative saturated rock masses can lead to a phenomenon

called ‘dilatant hardening’, which, as the name implies, tends to delay the onset of strain

localization because effective pressures tend to increase and hence strengthen the sample

in general [44, 141, 142]. On the other hand, relatively loose sands tend to compact when

sheared. Therefore, when pores compact faster than the rate at which fluids can escape,

pore fluid pressure increases and the effective pressure decreases, leading to a phenomenon

known in the geotechnical community as ‘liquefaction’ [3, 13, 14]. Consequently, it is im-

portant to study the deformation-diffusion behavior in saturated granular media taking into

account the effect of pore contraction/dilation and its influence on the relative density and

permeability of the solid matrix. This is accomplished in this study.
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Even though the interplay between fluid flow and solid deformation using finite elements

has been studied before, the focus of models dealing with fully saturated and partially

saturated soils has been on ‘homogeneous’ material response [45, 55, 143–150]. This has

been a natural approach given the fact that the technology to infer material inhomogeneities

in the laboratory has only been recently developed. Therefore, numerical models dealing

with the simulation of strain localization have either imposed inhomogeneous deformation

fields (e.g., [55, 143, 144]) or introduced arbitrary weaknesses in the otherwise pristine

specimens (e.g., [50–52, 62]).

New advances in laboratory experimentation, such as X-Ray Computed Tomography

(CT) and Digital Image Correlation (DIC) techniques, allow accurate observation of key

parameters associated with material strength and provide the motivation for the develop-

ment of more realistic models that incorporate information at a scale finer than specimen

scale (see works in [4, 15, 16] for applications of X-Ray CT and [83, 151] for applications of

DIC). In this paper, we adopt a refined constitutive model based on a meso-scale descrip-

tion of the porosity to simulate the development (location and direction) of deformation

bands on saturated samples of sand. The effective stress behavior of the granular material

is assumed to be governed by an elastoplastic model for sands developed by the authors

in [122, 152]. The ability of the model to incorporate data depicting the inherent inho-

mogeneities in samples of sand at the meso-scale provides a natural and realistic source

of inhomogeneity that, as we shall demonstrate subsequently, affects the stability and flow

characteristics of sand specimens. As a matter of terminology the ‘meso-scale’ here refers

to a scale smaller than specimen size but larger than particle size. In a typical sample

encountered in the laboratory, the meso-scale refers to the millimeter scale.

The constitutive model for the effective stresses is a member of the critical state plasticity

family of models. It is based on an original model proposed by Jefferies in [2] and extended

by the authors in [122, 152]. Two main features distinguish this model from its critical

state predecessors. First, the yield surface is allowed to ‘detach’ from the critical state

line by introducing a state parameter ψ [106], allowing a state point to lie either above or

below the critical state line (CSL). Through the state parameter ψ we are able to prescribe

spatial values of porosity across the sample, which constitutes the connection to the meso-

scale. Second, the model features a nonassociative flow rule and a three stress-invariant

formulation, for capturing important features of sand behavior [153].

The model for the two-phase system is based on the theory of mixtures [154, 155], which
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serves as the underlying theoretical block to develop balance laws for multi-phase bodies.

Saturated granular media is modeled as a two-phase system composed of a solid phase and a

fluid phase. This study extends the work of Li et al. [156] who considered elastic expulsion

of fluids at finite strain and also extends the work by Armero [143] who looked at the

strain localization behavior of homogeneous saturated samples of soil—obeying a generalized

Drucker-Prager constitutive model—under boundary conditions favoring inhomogeneous

deformations. Furthermore, here the fluid content is not decomposed into elastic and plastic

parts as the porosity field is naturally coupled to the elastoplastic formulation emanating

from the constitutive law for the porous matrix. The numerical implementation also differs

from that of Armero [143] as it does not rely on the operator split technique, but rather

solves the coupled system of nonlinear equations directly. It is worthwhile noting that

Armero and Callari [157] and Callari and Armero [47] expanded the work by Armero [143]

by developing a strong discontinuity model to model deformation banding in homogeneous

saturated media at finite strains.

In this work, fluid-saturated porous media is modeled using nonlinear continuum me-

chanics and a novel constitutive model for sands. Furthermore, the effect of porosity is also

accounted for by utilizing the Kozeny-Carman equation which relates the intrinsic perme-

ability to the porosity [158]. The objective of this paper is to study the effect of fluctuations

in porosity at the meso-scale on the stability and transport properties of samples of dense

and loose sand analyzed as boundary-value problems.

Using the balance laws for the system, along with the concept of effective stresses, the

strong form of the deformation-diffusion problem at finite deformations is developed. The

variational form is obtained as a two-field mixed formulation where the displacements in

the solid matrix u and the Cauchy fluid pressures p serve as basic unknowns. Thus, a

classical u−p formulation is obtained and discretized in space using elements satisfying the

Babuška-Brezzi stability condition [119, 159]. The linearization of the variational equations

serve as the building block to develop expressions for the acoustic tensor for two extreme

cases: the case of locally drained behavior and the case of locally undrained behavior. These

expressions for the acoustic tensor are then utilized in the analysis of localization of strain

for a fully saturated medium.

The structure of the paper is as follows. In Section 5.2 the conservation of mass and

linear momentum equations for a two-phase mixture are derived. Section 5.3 describes
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the constitutive framework utilized in the formulation. In particular, the concept of effec-

tive stress is introduced and the model governing the effective stresses is briefly described.

Darcy’s law is presented as the fundamental constitutive equation for fluid flow. In Section

5.4, the finite element solution procedure is presented and the linearization of the variational

equations is addressed in detail. Section 5.5 addresses the extreme criteria for localization

in fluid-saturated media. The framework described above is then utilized in a series of

numerical examples presented in Section 5.6, where it is shown that the stability and flow

properties of samples of sand is profoundly influenced by meso-scale inhomogeneities in the

initial porosity field.

As for notations and symbols used in this paper, bold-faced letters denote tensors and

vectors; the symbol ‘·’ denotes an inner product of two vectors (e.g. a ·b = aibi), or a single

contraction of adjacent indices of two tensors (e.g. c · d = cijdjk); the symbol ‘:’ denotes

an inner product of two second-order tensors (e.g. c : d = cijdij), or a double contraction

of adjacent indices of tensors of rank two and higher (e.g. C : ǫe = Cijklǫ
e
kl); the symbol

‘⊗’ denotes a juxtaposition, e.g., (a ⊗ b)ij = aibj . Finally, for any symmetric second order

tensors α and β, (α ⊗ β)ijkl = αijβkl, (α ⊕ β)ijkl = βikαjl, and (α ⊖ β)ijkl = αilβjk.

5.2 Balance laws: conservation of mass and linear momen-

tum

Consider a two-phase mixture of solids and fluid. The balance equations are obtained by

invoking the classical mixture theory (see for example the works in [154, 155]). Within this

context, each α-phase (α = s, f, for solid and fluid, respectively) or constituent occupies

a volume fraction, φα := Vα/V , where Vα is the volume occupied by the α-phase and

V = Vs + Vf is the total volume of the mixture. Naturally,

φs + φf = 1. (5.2.1)

The total mass of the mixture is defined by the mass contribution from each phase i.e.,

M = Ms+Mf . The inherent or true mass density for the α-phase is defined as ρα := Mα/Vα.

Also, the apparent or partial mass density is given by ρα = φαρα. Therefore, the total mass

density is given by

ρ = ρs + ρf . (5.2.2)
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Furthermore, both phases are assumed to be superimposed on top of each other and hence,

a point x in the mixture is occupied by both solid and fluid simultaneously.

From this point forward, all inherent or true quantities pertaining to the α-phase are

designated with a subscript, whereas apparent or partial quantities are designated with a

superscript as a general notation.

5.2.1 Balance of mass

In deriving the balance laws, it is relevant to pose all time derivatives following a particular

phase. From Figure 5.1, we note that the current configuration of the mixture in a region

Ω is defined by the mapping of the solid-phase ϕs (Xs, t), where Xs ≡ X is the position

vector in the reference configuration Ωs
0 ≡ Ω0, and the mapping of the fluid-phase ϕf (X f , t),

where X f is the position vector in the reference configuration Ωf
0. Hence, it is convenient

to define the total time-derivative following the α-phase such that

dα (�)

dt
=
∂ (�)

∂t
+ ∇x (�) · vα, (5.2.3)

where ∇x (�) ≡ ∂�/∂x is the gradient operator with respect to the current configuration Ω

and vα ≡ ∂ϕα/∂t is the velocity vector of the α-phase. For simplicity of notation and where

there is no room for ambiguity, we drop the subscripts and superscripts for all quantities

pertaining to the solid-phase, as we will write all balance laws following this phase. It is

thus straight-forward to check the identity

df (�)

dt
=

d (�)

dt
+ ∇x (�) · ṽ, (5.2.4)

where ṽ := vf − v is the relative velocity vector and d/dt (�) ≡ ˙
(�) is the total material

time derivative following the solid-phase.

Consider the expression for the total mass of α-phase in the current configuration i.e.,

mα ≡
∫

Ω
φαρα dΩ =

∫

Ωα
0

φαραJα dΩα
0 , α = s, f, (5.2.5)

which has been pulled back to the reference configuration of the α-phase via the mapping

ϕ−1
α and where Jα = detF α is the Jacobian of the deformation gradient tensor F α ≡

∂ϕα/∂Xα. If there is no production of α-phase mass and there are no mass exchanges
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Figure 5.1: Current configuration Ω mapped from respective solid and fluid reference con-
figurations.

amongst phases, conservation of mass implies

dα

dt
mα =

∫

Ωα
0

dα

dt
(φαραJα) dΩα

0 = 0, α = s, f, (5.2.6)

which after classical continuity arguments yields the localized form of the conservation of

mass for the α-phase
dα

dt
ρα + ρα∇x·vα = 0, (5.2.7)

where ∇x· (�) is the divergence operator with respect to the current configuration. Making

use of equation (5.2.7) and identity (5.2.4) the conservation of mass equation for the solid

and fluid phases are, respectively,

ρ̇s + ρs ∇x·v = 0 (5.2.8a)

ρ̇f + ρf ∇x·v = −∇x· q, (5.2.8b)

where q ≡ ρf ṽ is the Eulerian relative flow vector of the fluid phase with respect to the

solid matrix. Adding equations (5.2.8a) and (5.2.8b), we get the basic conservation of mass
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equation for the system, i.e.,

ρ̇0 = −J ∇x· q, (5.2.9)

where ρ0 ≡ Jρ is the pull-back mass density of the mixture in the reference configuration.

It is clear from the above equation that in the case of locally undrained deformations (i.e.,

when both phases of the mixture move as one) q ≈ 0 and thus the relative mass flux term

in the right-hand side drops out and the classical conservation of mass for a mono-phase

body is captured.

Equations (5.2.8a) and (5.2.8b) are typically simplified by recalling the definition of

the partial densities and introducing the bulk modulus. For barotropic flows, there exists a

functional relationship of the form fα (pα, ρα) = 0, where pα is the intrinsic Cauchy pressure

in the α-phase or the force acting on this phase per unit area of the same phase [116, 156].

Thus, it is meaningful to define the bulk modulus of the alpha phase such that

Kα = ρα
dpα
dρα

, α = s, f, (5.2.10)

and therefore equations (5.2.8a) and (5.2.8b) can then be rewritten, respectively, as

φ̇s + φs

(
ṗs

Ks
+ ∇x·v

)
= 0 (5.2.11a)

φ̇f + φf

(
ṗf

Kf
+ ∇x·v

)
= − 1

ρf
∇x· q. (5.2.11b)

Adding the last two equations and recalling equation (5.2.1), we get

φs ṗs

Ks
+ φf ṗf

Kf
+ ∇x·v = − 1

ρf
∇x· q. (5.2.12)

The above equation can be expressed in terms of the Kirchhoff intrinsic pressures by

recalling the relationship between the Kirchhoff and Cauchy stress tensors, i.e., τα ≡ Jσα

and as a result the Kirchhoff pressure for the α-phase is defined as ϑα = Jpα. Using the

identity J̇ = J ∇x·v [30] we express equation (5.2.12) as

φs ϑ̇s

Ks
+ φf ϑ̇f

Kf
+ J̇

[
1 − φs

J

ϑs

Ks
− φf

J

ϑf

Kf

]
= − J

ρf
∇x· q. (5.2.13)
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Equation (5.2.13) is complete in the sense that neither constitutive nor kinematic assump-

tions have been introduced. In geomechanical applications, a typical and plausible assump-

tion is to treat the solid phase as incompressible, and consequently Ks → ∞. Then, the

reduced balance of mass equation for the mixture can be written as

φf ϑ̇f

Kf
+ J̇

[
1 − φf

J

ϑf

Kf

]
= − J

ρf
∇x· q. (5.2.14)

Finally, we can write the Lagrangian balance of mass equation by making use of the Piola

identity, i.e. ∇X·
(
JF−t

)
= 0 where ∇X· (�) is the divergence operator with respect to the

reference configuration of the solid phase and the superscript ‘t’ is the transpose operator.

Thus,

J ∇x· q = ∇X·Q, (5.2.15)

where Q ≡ JF−1 · q is the Piola transform of the Eulerian vector q. Therefore, the

Lagrangian balance of mass equation takes the form, cf. equation (5.2.9),

ρ̇0 = −∇X·Q. (5.2.16)

5.2.2 Balance of linear momentum

At this point, it is necessary to introduce the concept of partial stresses in a more rigorous

way. Let σα denote the Cauchy partial stress tensor for the α-phase. The total Cauchy

stress tensor is obtained from the sum [46, 155, 160]

σ = σs + σf . (5.2.17)

From the above definition, an expression for the partial Cauchy pressure or mean normal

stress for the α-phase can be readily obtained, i.e. pα ≡ −1/3 trσα and hence, the intrinsic

Cauchy pressures can be defined such that

ps = − 1

3φs
trσs and pf = − 1

3φf
trσf . (5.2.18)

Also, the associated first Piola-Kirchhoff partial stress tensor can be defined as P α =

Jσα · F−t, the total first Piola-Kirchhoff stress tensor is given by

P = P s + P f . (5.2.19)
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The linear momentum acting on the α-phase is given by [154, 155, 161]

lα =

∫

Ω
ραvα dΩ, (5.2.20)

whereas the resulting forces acting on the phase are [46]

rα =

∫

Ω
(φαραg + φαhα) dΩ +

∫

Γ
φαtα dΓ, (5.2.21)

where g is the gravity vector. The first term in (5.2.21) results from the body forces acting

on the α-phase, the second term comes from the forces exerted on the α-phase from other

phases in the mixture, and the third term emanates from the tractions imposed on the

phase at the boundary Γ. Note that the partial traction is related to the partial Cauchy

stress on the α-phase via the tetrahedron theorem i.e., tα ≡ φαtα = σα · n, where n is a

unit vector normal to the surface Γ.

Balance of linear momentum on the α-phase necessitates

dα

dt
lα = rα, (5.2.22)

and after pull-back and push-forward operations and enforcing balance of mass, see equation

(5.2.7), we get ∫

Ω
ραaα dΩ = rα, (5.2.23)

where aα ≡ dαvα/dt is the absolute acceleration vector for the α-phase. Once again, we

can invoke localization arguments to get the point-wise version for the balance of linear

momentum for the α-phase

∇x·σα + ραg + φαhα = ραaα, (5.2.24)

which leads to the overall balance of linear momentum equation for the mixture i.e.,

∇x·σ + ρg = ρas + ρf ã, (5.2.25)

where ã ≡= af − as is the relative acceleration. In obtaining the above equation, the

balance of linear momentum equations for both phases have been added and the fact that

φshs + φfhf = 0, since these are mutually-equilibrating internal forces, has been exploited.
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For the important case of quasi-static loading, all inertial forces are neglected and the

equation of balance of linear momentum for the mixture reduces to the classical form

∇x·σ + ρg = 0. (5.2.26)

In this work, only quasi-static loading conditions will be considered.

Finally, the Lagrangian form of the balance of linear momentum is easily obtained from

its Eularian counterpart, namely,

∇X·P + ρ0g = ρas + ρf ã. (5.2.27)

Accordingly, the Lagrangian balance of linear momentum for the system in the quasi-static

range takes the form

∇X·P + ρ0g = 0. (5.2.28)

Remark 7. The equations of balance of mass and linear momentum derived above from

basic principles of the mixture theory are identical to those presented by Borja in [46] and

Li et al. in [156]. In fact, Borja [46] considers the case of a three-phase mixture by taking

into account the gas phase also and develops a constitutive framework, but no boundary

value problems are solved. The interested reader is referred to the work in [46] where the

remaining balance laws for the multi-phased system are reported.

5.3 Constitutive framework

There is the need to establish a link between the state of stress and the displacements or

deformations and between the flow vector and the fluid pressure in the porous media. These

links are provided by constitutive relationships that we shall explicate in this section. In

particular, the stresses are assumed to be a nonlinear function of the deformations via an

elastoplastic constitutive response. On the other hand, the relative flow vector is related to

the fluid pressure using Darcy’s law.

5.3.1 The elastoplastic model for granular media

Analogous to the case of mono-phase materials, constitutive relations in fluid saturated

porous media connect the deformations in the solid matrix to a suitable measure of stress.
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The relationship must connect so-called energy conjugate pairs of stress-strain measures.

Consider the general definition of effective stress for saturated conditions [162, 163]

σ′ = σ +

(
1 − K

Ks

)
pf1, (5.3.1)

where K is the bulk modulus of the solid matrix and 1 is the second-order identity tensor.

Borja in [163] derived expression (5.3.1) using a strong discontinuity approach for the me-

chanical theory of porous media, and has shown that one suitable energy conjugate pair is

furnished by the effective stress σ′ and the symmetric part of the rate of deformation tensor

for the solid matrix d ≡ sym l, with l ≡ ∇x v, and where we have dropped the subscript ‘s’

from the velocity vector as there is no room for ambiguity.

For the case of interest herein, where the solid phase is assumed to be incompressible,

the above expression for the effective stress reduces to the classical form introduced by

Terzaghi [164], i.e.

σ′ = σ + p1 =⇒ τ ′ = τ + ϑ1, (5.3.2)

where the expression on the right-hand-side has been obtained from direct application of

the relationship between the Kirchhoff and the Cauchy stress (i.e., τ = Jσ). Also note

the subscript ‘f’ has been dropped from the fluid-phase pressures for simplicity of notation.

For incompressible solid grains, the balance of mass for the solid phase (cf. (5.2.11a))

necessitates φ̇s + φs ∇x·v = 0 implying
˙

(Jφs) = 0, and therefore

φs = φs
0/J and φf = 1 −

(
1 − φf

0

)
/J , (5.3.3)

where φs
0 and φf

0 are the reference values of φs and φf when J = 1. Also, the bulk modulus

for the fluid phase is assumed to be constant and hence recalling its definition allows us to

obtain a relationship between the intrinsic fluid pressure and the intrinsic fluid density, i.e.

Kf = ρf
dp

dρf
= constant =⇒ ρf = ρf0 exp

(
p− pf0

Kf

)
, (5.3.4)

where ρf0 is the initial reference fluid mass density at initial pressure pf0.

At this point, a constitutive framework governing the effective stress as a function of

the solid matrix deformation can be introduced. Herein we assume the effective behavior of

the granular material is governed by the three-invariant hyperelastoplastic model proposed
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by the authors in [122, 152]. Here, we summarize the salient features of the model.

The model is cast within the framework of nonlinear kinematics where the total de-

formation gradient is assumed to allow the multiplicative decomposition into elastic and

plastic parts [115] i.e.,

F = F e · F p, (5.3.5)

where F e and F p are defined as the elastic and plastic deformation gradient, respectively.

Isotropic hyperelasticity

Consider the principal elastic stretches emanating from F e · Na = λana (no sum), where

λe
a for a = 1, 2, 3 are the principal elastic stretches in the corresponding principal directions

Na and na in the intermediate and current configuration, respectively. Material isotropy

is satisfied if the strain-energy function Ψ = Ψ (λe
1, λ

e
2, λ

e
3). The elastic region is assumed to

be governed by the isotropic strain energy function proposed in [1] and utilized in modeling

of granular bodies in [66, 125],

Ψ (εev, ε
e
s) = Ψ̃ (εev) +

3

2
µeεe 2

s , (5.3.6)

where

Ψ̃ (εev) = −p0κ̂ expω, ω = −ε
e
v − εev 0

κ̂
, µe = µ0 +

α0

κ̂
Ψ̃ (εev) . (5.3.7)

The independent variables are the volumetric and deviatoric invariants of the elastic loga-

rithmic stretch tensor, respectively,

εev = εe1 + εe2 + εe3 and εes =
1

3

√
2
[
(εe1 − εe2)

2 + (εe2 − εe3)
2 + (εe3 − εe1)

2
]
, (5.3.8)

where εea ≡ lnλe
a. The strain energy function is an invariant function of the elastic de-

formations only. The Kirchhoff effective stress tensor τ ′ is coaxial with the left elastic

Cauchy-Green deformation tensor be ≡ F e · F e t and defined such that

τ ′ = 2
∂Ψ

∂be · be. (5.3.9)

The above hyperelastic model produces pressure-dependent elastic bulk and shear moduli,

a feature commonly observed in the laboratory. The elastic constants necessary for a full
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description of the elasticity are the reference strain εev 0 and the reference pressure p0 of

the elastic compression curve, as well as the compressibility index κ̂. The model produces

coupled volumetric and deviatoric responses in the case α0 6= 0 for which µe is a nonlinear

function of the volumetric deformations. Otherwise, for α0 = 0 the responses are decoupled

and the shear modulus µe ≡ µ0 is constant.

Plasticity for sands

We define the three invariants of the effective Kirchhoff stress tensor as

p′ =
1

3
tr τ ′, q =

√
3

2
‖ξ′‖, 1√

6
cos 3θ =

tr ξ′3

χ3
≡ y, (5.3.10)

where ξ′ = τ ′ − p′1 is the deviatoric component of the effective stress tensor τ ′, and

χ =
√

tr ξ′2. The quantity p′ is called the mean normal effective stress and is assumed

negative throughout. Further, θ is the Lode’s angle whose values range from 0 ≤ θ ≤ π/3;

it defines an angle on a deviatoric plane emanating from a tension corner.

From these three stress invariants we construct a yield surface of the form

F
(
τ ′, πi

)
= F

(
p′, q, θ, πi

)
= ζ (θ) q + pη

(
p′, πi

)
(5.3.11)

where

η =





M [1 + ln (πi/p
′)] if N = 0

M/N
[
1 − (1 −N) (p′/πi)

N/(1−N)
]

if N > 0.
(5.3.12)

The image stress πi < 0 controls the size of the yield surface; it is defined such that the

stress ratio η = −ζq/p = M when p′ = πi. The parameter N ≥ 0 determines the curvature

of the yield surface on a meridian plane and it typically has a value less than or equal to

0.4 for sands [2]. Lode’s angle θ plays the role of the third stress invariant modifying the

shape of the yield and plastic potential surfaces on a deviatoric plane through the function

ζ = ζ (θ). Here we adopt the form proposed by Gudehus in [127] and Argyris et al. in [128],

namely,

ζ (θ) =
(1 + ̺) + (1 − ̺) cos 3θ

2̺
(5.3.13)

where ̺ is a constant parameter called ellipticity. The above function is only convex for

7/9 ≤ ̺ ≤ 1 [129] and satisfies the boundary conditions: (a) ζ = 1/̺ when θ = 0 i.e., tension

corner; and (b) ζ = 1 when θ = π/3 i.e., compression corner. The third invariant allows to
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account for the fact that soils have less yield strength in tension than in compression.

Remark 8. We note in passing that in the present work we do not make use of the shape

function proposed by Willam and Warnke [130] as it has been shown recently in [165] (and

experienced first hand by the authors) that such shape function, shown in equation (12) in

[152], leads to convergence problems in the material subroutine when ̺ gets small. Hence,

to avoid loss of robustness in our numerical simulations, we only make use of the simple

shape function presented above.

Similar to the yield surface, we can postulate a plastic potential function of the form

G
(
τ ′, πi

)
= G

(
p′, q, θ, πi

)
= ζ (θ) q + pη

(
p′, πi

)
(5.3.14)

with

η =





M [1 + ln (πi/p
′)] if N = 0

M/N
[
1 −

(
1 −N

)
(p′/πi)

N/(1−N)
]

if N > 0.
(5.3.15)

When πi = πi and N = N , plastic flow is associative; otherwise, it is nonassociative in the

volumetric sense. Additionally, from the multiplicative decomposition of the deformation

gradient, the additive decomposition of the velocity gradient l follows,

l = le + lp ⇒ d = de + dp, (5.3.16)

where de ≡ sym le, and dp ≡ sym lp. Neglecting the plastic spin ωp (see [118] for significance

and consequences), we write the flow rule as

dp = λ̇
∂G

∂τ ′
, (5.3.17)

where λ̇ is the so-called consistency parameter.

Finally, recall the definitions for the volumetric and deviatoric plastic strain rate invari-

ants, respectively,

ε̇pv = trdp and ε̇ps =

√
2

3
‖dp − 1/3ε̇pv1‖ . (5.3.18)

Also, consider the state parameter ψi, which is the distance between the specific volume of
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the sample and the specific volume at critical at the image pressure,

ψi = v − vc0 + λ̃ ln (−πi) , (5.3.19)

where v is the specific volume, vc0 is the reference specific volume at unit pressure, and λ̃ is

the plastic compressibility index. The state parameter ψi furnishes a link to the meso-scale

by providing information about the relative density at a point in the sample. If ψi < 0 the

sample is denser than critical and if ψi > 0 the sample is said to be looser than critical. In

the case when ψi = 0 the sample is at critical state. All of these parameters emanate from

the critical state theory which postulates the existence of the critical state line [6, 153].

The hardening law, which relates the image pressure with the state of stress, the state

parameter ψi, and the deviatoric component of plastic flow, reads

π̇i = h (π∗i − πi) ε̇
p
s , (5.3.20)

where π∗i = π∗i (p′, ψi), and h is a constant material property, to be calibrated in the finite

deformation regime. We note in passing that the above hardening law allows for correct

qualitative capture of key features in both loose and dense sands by allowing hardening

and softening plastic response. More details regarding the elastoplastic model for sands

presented herein and its numerical implementation can be found in [122, 131, 152].

5.3.2 Darcy’s law

The relative flow vector q is related to the Cauchy pore pressure via the Eularian form of

the classical Darcy’s law [158, 161, 166]

q = −1

g
k · [∇x p− γf ] , (5.3.21)

where k ≡ kγf/µ1 is the isotropic hydraulic conductivity tensor, the scalar k is the intrinsic

permeability of the porous media, µ is the dynamic viscosity of the fluid, g is the gravi-

tational acceleration constant, and γf ≡ ρfg is the scalar specific weight of the fluid and

γf ≡ ρfg is its tensorial counterpart.

It is well documented throughout the literature that the intrinsic permeability can take

the general form [158]

k = f1 (s) f2

(
φf
)
d2, (5.3.22)
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where s is a dimensionless parameter that expresses the effect of the shape of the solid

grains, f1 (s) is called shape factor, f2

(
φf
)

is called the porosity factor and d is the effective

diameter of the grains. One of the most widely used relationships for the permeability is the

Kozeny-Carman permeability equation proposed by Kozeny [167] and Carman [168] namely

(see [158]),

k
(
φf
)

=
1

180

φf 3

(1 − φf)
2d

2, (5.3.23)

which we will use herein to account for the effect of porosity and changes thereof in the

Eulerian permeability tensor k.

For completeness of presentation, we obtain the Lagrangian expression for Darcy’s law

by recalling the Piola transform of the relative flow vector,

Q = JF−1 · q = −1

g
JF−1 · k · [∇x p− γf ] . (5.3.24)

By the same token, the expression can be further reduced by using the well-known relation-

ship ∇X (�) = ∇x (�) · F to obtain the fully Lagrangian form

Q = −1

g
K ·

[
∇X p− F t · γf

]
, (5.3.25)

where K = JF−1 · k · F−t is the pull-back hydraulic conductivity tensor.

Remark 9. Note that the intrinsic permeability is treated as a function of the current value

of porosity φf and hence will need to be linearized accordingly (see equation 5.4.45). Figure

5.2 shows the variation of the intrinsic permeability with specific volume. For samples of

globally undrained sand (as considered herein in the numerical simulations section), the

variation in specific volume is not significant enough as to affect the results. However, in

other boundary-value problems where compaction/dilation bands are allowed to form at

large strains, changes in porosity can lead to changes in permeability of a few orders of

magnitude [12].

5.4 Finite element implementation

In this section, the balance laws developed in Section 5.2 provide a complete set of governing

equations, which allow for the solution of quasi-static deformation-diffusion boundary-value

problems. We depart from the strong form of the problem, and develop the variational
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Figure 5.2: Nondimensional values of intrinsic permeability (i.e. k/d2) as a function of
specific volume v.

form and its linearized version which allows for optimal convergence of Newton-Raphson

schemes, and finally present the classic matrix form known as the u − p formulation. The

problem results in a parabolic system where the displacements of the solid phase and the

pore-pressures are the basic unknowns in an updated Lagrangian finite element scheme

[133].

5.4.1 The strong form

Consider the Lagrangian version of the strong form. Let Ω0 be a simple body with boundary

Γ0 defined by the solid matrix in the reference configuration. Let N be the unit normal

vector to the boundary Γ0. We assume the boundary Γ0 admits the decomposition [119]

Γ0 = Γd0 ∪ Γt0 = Γp0 ∪ Γq0,

∅ = Γd0 ∩ Γt0 = Γp0 ∩ Γq0,
(5.4.1)

where Γd0, Γt0, Γp0, and Γq0 are open sets and ∅ is the empty set. Figure 5.3 shows the region

Ω0 and its boundary Γ0 decomposed as described above.

The Lagrangian strong form for the quasi-static case and incompressible solid grains

reads: find the displacements u ≡ x − X : Ω0 → R
nsd and the Cauchy pore-pressures
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Figure 5.3: Reference domain Ω0 with decomposed boundary Γ0

p : Ω0 → R such that

∇X·P + ρ0g = 0 in Ω0 (5.4.2)

ρ̇0 + ∇X·Q = 0 in Ω0 (5.4.3)

u = u on Γd0 (5.4.4)

P · N = t on Γt0 (5.4.5)

p = p on Γp0 (5.4.6)

Q · N = −Q on Γq0 (5.4.7)

where nsd is the number of spatial dimensions to be considered, u and p are the prescribed

displacements and pressure on the Dirichlet boundaries Γd0 and Γp0, respectively. By the same

token, t and Q are the prescribed traction vector and influx with respect to the Neumann

boundaries Γt0 and Γq0, respectively. Finally, it is necessary to specify the initial conditions

u (X, t = 0) = u0 (X) , p (X, t = 0) = p0 (X) , (5.4.8)

where X is a point in Ω0.

5.4.2 The variational form

To define the weak or variational form, two classes of functions need to be characterized

[119]. The first class is composed of trial solutions, which are required to satisfy the Dirichlet
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boundary conditions. The spaces of trial solutions for the displacement and pressure fields

are, respectively [169]

Su = {u : Ω0 → R
nsd | ui ∈ H1, u = u on Γd0}, (5.4.9)

Sp = {p : Ω0 → R| p ∈ H1, p = p on Γp0}, (5.4.10)

where H1 is the space of Sobolev functions of first degree. The second class of functions

are the weighting functions or variations. We require the weighting functions to vanish

on Dirichlet boundaries. Thus, let the spaces of weighting functions associated with the

displacement and pressure field be, respectively

Vu = {η : Ω0 → R
nsd | ηi ∈ H1, η = 0 on Γd0}, (5.4.11)

Vp = {ψ : Ω0 → R| ψ ∈ H1, ψ = 0 on Γp0}. (5.4.12)

Let G : Su × Sp × Vu → R be given by

G (u, p,η) =

∫

Ω0

(
∇X η : P − ρ0η · g

)
dΩ0 −

∫

Γt
0

η · t dΓ0. (5.4.13)

Under suitable smoothness conditions, G (u, p,η) = 0 can be shown to be equivalent to

balance of linear momentum in the strong form, i.e., equations (5.4.2), (5.4.4) and (5.4.5).

Similarly, let H : Su × Sp × Vp → R take the form

H (u, p, ψ) =

∫

Ω0

[
ψρ̇0 −∇X ψ · Q

]
dΩ0 −

∫

Γq
0

ψQdΓ0. (5.4.14)

Once again, under suitable smoothness conditions, H (u, p, ψ) = 0 can be shown to be

equivalent to balance of mass in the strong form, i.e., equations (5.4.3), (5.4.6) and (5.4.7).

Consequently, the Lagrangian weak form of the problem reads: find u ∈ Su and p ∈ Sp
such that for all η ∈ Vu and ψ ∈ Vp

G (u, p,η) = H (u, p, ψ) = 0. (5.4.15)

It is our objective to develop an updated Lagrangian scheme and hence, we need to express

the Lagrangian integrand of the above weak form in Eulerian form. We accomplish this by
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recalling the identities

∫

Ω0

∇X η : P dΩ0 =

∫

Ω0

∇x η : τ dΩ0,

∫

Ω0

∇X ψ·QdΩ0 =

∫

Ω0

J ∇xψ·q dΩ0, (5.4.16)

which we can insert into equations (5.4.13) and (5.4.14) above to get

G (u, p,η) =

∫

Ω0

(∇x η : τ − Jρη · g) dΩ0 −
∫

Γt
0

η · t dΓ0, (5.4.17)

and

H (u, p, ψ) =

∫

Ω0

[ψρ̇0 − J ∇xψ · q] dΩ0 −
∫

Γq
0

ψQdΓ0. (5.4.18)

Finally, for the sake of compactness of presentation, we introduce the following notations,

g1 (u, p) =

∫

Ω0

∇x η :
(
τ ′ − Jp1

)
dΩ0, (5.4.19a)

g2 (u, p) = −
∫

Ω0

Jρη · g dΩ0, (5.4.19b)

gext (t) =

∫

Γt
0

η · t dΓ0, (5.4.19c)

and similarly

h1 (u, p) =

∫

Ω0

ψρ̇0dΩ0, (5.4.20a)

h2 (u, p) =

∫

Ω0

J

g
∇xψ · k · [∇x p− γf ] dΩ0, (5.4.20b)

hext (t) =

∫

Γq
0

ψQdΓ0, (5.4.20c)

so that equation (5.4.15) implies

G (u, p,η) = gext (t) − g1 (u, p) − g2 (u, p) , (5.4.21)

H (u, p, ψ) = hext (t) − h1 (u, p) − h2 (u, p) . (5.4.22)

Time integration and linearization of the variational form

Satisfaction of the weak form will entail solving a coupled nonlinear system of equations

where the primary variables are the displacements u and the pore pressure p, hence the
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name u − p formulation. At the same time, the u − p formulation is resolved using an

iterative Newton-Raphson procedure, which necessitates the system Jacobians or consistent

tangents in closed form for optimal asymptotic convergence rates. For the particular model

proposed herein, it is possible to calculate such consistent tangents and thus attain optimal

convergence rates. This is furnished by the fact that the elastoplastic model proposed is

integrated within the return mapping algorithm framework [117], which allows for a closed

form expression for the elastoplastic consistent tangent operator (see [122, 131, 152] for

more details).

Consider the generalized trapezoidal family of methods [119] utilized in the solution of

parabolic problems. The one-step scheme relies on the advancement of the solution at time

station tn+1 from converged values at tn, i.e.

{
u

p

}

n+1

=

{
u

p

}

n

+ ∆t (1 − α)

{
u̇

ṗ

}

n

+ ∆tα

{
u̇

ṗ

}

n+1

, (5.4.23)

where α is the integration parameter and ∆t ≡ tn+1 − tn is the time step. Several classical

schemes emanate for suitable choices of the integration parameter. For α = 0 the scheme

reduces to the explicit Euler algorithm, α = 1/2 captures the Crank-Nicolson scheme,

and α = 1 reduces to the implicit backward Euler. For a detailed discussion about the

stability and accuracy of the above-mentioned family please see [119]. With the purpose

of obtaining a numerical scheme purely dependent on displacements u and pressure p, we

integrate equation (5.4.22) using the trapezoidal family and obtain

H∆t (u, p, ψ) =

∫

Ω0

ψ∆ρ0 dΩ0 − ∆t

∫

Ω0

[αJ ∇xψ · q + (1 − α) (J ∇xψ · q)n]︸ ︷︷ ︸
(J ∇x ψ·q)n+α

dΩ0

− ∆t

∫

Γq
0

ψ (αQ+ (1 − α)Qn)︸ ︷︷ ︸
Qn+α

dΓ0, (5.4.24)

where ∆ρ0 ≡ ρ0 − ρ0n and where we have omitted the ‘n + 1’ subscript for simplicity of

notation. Similar to the results obtained above, the variational form implies

H∆t (u, p, ψ) = h∆t
ext (t) − h∆t

1 (u, p) − h∆t
2 (u, p) , (5.4.25)



5.4. FINITE ELEMENT IMPLEMENTATION 129

where

h∆t
ext (t) = ∆t

∫

Γq
0

ψQn+αdΓ0

h∆t
1 (u, p) =

∫

Ω0

ψ∆ρ0 dΩ0

h∆t
2 (u, p) = −∆t

∫

Ω0

(J ∇xψ · q)n+α dΩ0. (5.4.26)

The Newton-Raphson approach follows the standard procedure in which the governing

equations from the weak form are expanded about a configuration
(
uk, pk

)
and only linear

terms are kept i.e.,

0 = G (u, p,η) ≈ G
(
uk, pk,η

)
+ δG

(
uk, pk,η

)
, (5.4.27)

0 = H∆t (u, p, ψ) ≈ H∆t

(
uk, pk, ψ

)
+ δH∆t

(
uk, pk, ψ

)
, (5.4.28)

hence, implying

−G
(
uk, pk,η

)
= δG

(
uk, pk,η

)
, (5.4.29)

−H∆t

(
uk, pk, ψ

)
= δH∆t

(
uk, pk, ψ

)
. (5.4.30)

Therefore, the iterative strategy necessitates evaluation of the variations δG
(
uk, pk,η

)
and

δH∆t

(
uk, pk, ψ

)
. Note that equation (5.4.27) is solved at time tn+1 as implied by our

notation.

The variation of δG (u, p,η) implies

δG (u, p,η) = δgext (t) − δg1 (u, p) − δg2 (u, p) , (5.4.31)

where δgext (t) = 0 for deformation-independent tractions. Application of the chain rule

then yields

δg1 (u, p) =

∫

Ω0

[
δ∇x η :

(
τ ′ − Jp1

)
+ ∇x η : δ

(
τ ′ − Jp1

)]
dΩ0, (5.4.32)
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where

δ∇x η = −∇x η · ∇x δu, (5.4.33)

δ
(
τ ′ − Jp1

)
=

(
cep + τ ′ ⊕ 1 + τ ′ ⊖ 1 − Jp1 ⊗ 1

)
: ∇x δu − Jδp1 (5.4.34)

δJ = J ∇x· δu. (5.4.35)

The fourth-order tensor cep is the elastoplastic consistent tangent operator emanating from

the constitutive model described in Section 4.2. We get

δg1 (u, p) =

∫

Ω0

[∇x η : (aep + Jp (1 ⊖ 1 − 1 ⊗ 1)) : ∇x δu −∇x·ηJδp] dΩ0, (5.4.36)

where

aep ≡ cep + τ ′ ⊕ 1 (5.4.37)

is the total elastoplastic tangent operator and Lvτ ′ = cep : d where Lvτ ′ is the Lie derivative

of the effective stress tensor τ ′ (see Andrade and Borja [152] for notations). By the same

token,

δg2 (u, p) = −
∫

Ω0

δρ0η · g dΩ0,

= −
∫

Ω0

J

(
∇x· δu +

φf

Kf
δp

)
η · γf dΩ0, (5.4.38)

where we have used equation (5.3.3), δρs = 0, and the following key results

δφf =
(
1 − φf

)
∇x· δu, (5.4.39)

δρf =
ρf

Kf
δp. (5.4.40)

Similarly,

δH∆t (u, p, ψ) = δh∆t
ext (t) − δh∆t

1 (u, p) − δh∆t
2 (u, p) , (5.4.41)

where δh∆t
ext (t) = 0 for configuration- and pressure-independent mass flux. Thus,

δh∆t
1 (u, p) =

∫

Ω0

ψδρ0dΩ0 =

∫

Ω0

ψρfJ

(
∇x· δu +

φf

Kf
δp

)
dΩ0. (5.4.42)
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Now, we compute

δh∆t
2 (u, p) = α∆t

∫

Ω0

1

g
δ (J ∇xψ · k) · (∇x p− γf) dΩ0

+ α∆t

∫

Ω0

1

g
J ∇xψ · k · δ (∇x p− γf) dΩ0, (5.4.43)

where

δ∇xψ = −∇xψ · ∇x δu (5.4.44)

δk =
1

µ

(
k′γfδφ

f + kδρfg
)
1 (5.4.45)

δ∇x p = ∇x δp−∇x p · ∇x δu (5.4.46)

δγf = δρfg. (5.4.47)

5.4.3 The matrix form

The spatial discretization is furnished by the classical Galerkin method whereby the dis-

placement and the pressure fields are approximated by [119]

u ≈ Nd + N ξξ, (5.4.48)

p ≈ Np + N ζζ, (5.4.49)

where N is the array of displacement shape functions, d is the vector of unknown dis-

placements, N ξ is the array of shape functions approximating the displacement boundary

conditions, ξ is the vector of prescribed nodal displacements, N is the array of pressure

shape functions, p is the vector of unknown pore-pressures, N ζ is the array of shape func-

tions approximating the pressure boundary conditions, and ζ is the vector of prescribed

nodal pore-pressures. Then, following the Galerkin recipe, the weighting functions are ap-

proximated by

η ≈ Nc, (5.4.50)

ψ ≈ Nc, (5.4.51)
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where c and c are arbitrary constant vectors. The spatial and temporal discretization leads

to the matrix form of the problem, which reads: find the vectors d and p such that

{
Gext

Hext

}
−
{

Gint

H int

}
≡
{

Rg

Rh

}
, (5.4.52)

where

Gext (t) ≡
∫

Γt
0

N tt dΓ0, (5.4.53)

Gint (d,p) ≡
∫

Ω0

[
Bt
(
τ ′ − Jpδ

)
− ρ0N

tg
]
dΩ0, (5.4.54)

and

Hext (t) ≡ ∆t

∫

Γq
0

N
t
Qn+α dΓ0, (5.4.55)

H int (d,p) ≡
∫

Ω0

[
N

t
∆ρ0 − ∆t

(
JΓtq

)
n+α

]
dΩ0. (5.4.56)

After algebraic manipulations, the Newton-Raphson incremental solution at the k+ 1 iter-

ation is updated using

[
Kg Φg

Kh + α∆tKh Φh + α∆tΦh

]

k

{
δd

δp

}

k+1

=

{
Rg

Rh

}

k

. (5.4.57)

The reader is referred to Appendix A where a detailed presentation of the matrix form of

the problem is given.

Remark 10. Some authors have pointed out the existence of numerical instabilities at the

onset of the deformation-diffusion problem when considering the case of incompressible

fluid phase [170, 171]. In fact, Murad and Loula [170, 172] showed, in the context of linear

elasticity, that at the onset of deformation the system is form-identical to the classical

problem of incompressible elasticity or Stoke’s flow in fluid mechanics. This is also true in

the context of poroplasticity at large strains. The system can be shown to reduce to

[
Â B̂

Ĉ 0

]{
δu

δp

}
=

{
F 1

F 2

}
, (5.4.58)
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and thus,

ĈÂ
−1

B̂δp = ĈÂ
−1

F 1 − F 2, (5.4.59)

where Â is a nu × nu square matrix, B̂ is a nu × nq rectangular matrix, and Ĉ is a

nq×nu matrix, with nu and nq representing the number of displacement and pore pressure

unknowns, respectively. Hence, for ĈÂ
−1

B̂ to have full rank, we must have nu ≥ np. One

way to avoid stability problems associated with this constraint is to satisfy the so-called

Babuška-Brezzi condition (see [119, 159]). On the other hand, for the deformation-diffusion

problem at hand, investigators have used stabilization techniques available to solve mixed

problems. Wan in [171] used the Petrov-Galerkin technique proposed by Hughes et al. in

[173] for solution of Stokes flow. Similarly, Mira et al [174] used Simo-Rifai elements [175]

to obtain stable solutions for the deformation-diffusion problem. In this particular work,

we only use mixed finite elements satisfying the Babuška-Brezzi stability condition.

5.5 Localization of saturated granular media

In this section, we will derive expressions for the Eulerian acoustic tensors corresponding to

the locally (fully) drained and locally undrained conditions. These expressions are useful as

they signal the loss of strong ellipticity of the corresponding drained and undrained global

tangent operator. As in the classical case of mono-phase bodies, the onset of localization,

as measured by the loss of positive definiteness in the acoustic tensor, can be used to define

the local direction of a shear band and maybe even as a switch for a change in the material

behavior inside the band. Here, two extreme cases are considered. Firstly, we look at the

case of a fully drained porous medium, which basically reduces back to the classical mono-

phase theory. Secondly, we investigate the case of locally undrained behavior, where the

global tangent is influenced by the bulk compressibility of the fluid phase, but relative flow

is not present anywhere in the sample. In a way, this latter case is analogous to the drained

case, but with a different underlying constitutive relation (one in which the fluid phase plays

a role, but there is no diffusion). The global tangent aep obtained in the previous section

is used to obtain the drained and undrained localization criteria.

It is important to note that in general, saturated media behave somewhere in between

locally drained and locally undrained conditions. For either extreme case, it is possible to

write down an expression relating the total stress rate and the rate of deformation for the

granular matrix i.e., δP = A : δF , where A is the suitable (drained or undrained) first
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tangent operator with components AiJkL := ∂PiJ/∂FkL [30, 64]. Consequently, we require

continuity of total tractions across the band and hence (cf., equation (2.35) in [64]),

[[A : δF ]] · N = 0 (5.5.1)

where [[�]] is the jump operator across the band and N is the normal to an impending shear

band in the reference configuration. Furthermore, by assuming the first tangent operator

is continuous across the band we can write [[A : δF ]] = A : [[δF ]]. From [64] we get

[[Ḟ ]] = [[V ]]⊗N/h0, where [[V ]] is the material velocity jump and h0 is the (finite) thickness

of the planar band in the reference configuration. Continuity of tractions requires

1

h0
A · [[V ]] = 0, Aik = NJAiJkLNL (5.5.2)

For h0 6= 0, the necessary condition for localization is

det A = 0 (5.5.3)

with A as the Lagrangian acoustic tensor. Finally, pushing the Lagrangian acoustic tensor

forward, we obtain the Eulerian acoustic tensor, i.e.

Aik = njaijklnl (5.5.4)

with aijkl := FjJFlLAiJkL as the total spatial tangent operator and n as the normal to

the deformation band in the current configuration. A standard argument then yields the

Eulerian necessary condition for localization,

detA = 0. (5.5.5)

Recall the relationship between the total First Piola Kirchhoff stress and the Kirchhoff

stress, i.e. P = τ · F−t, which together with equation (5.3.1) yields

P = P ′ − θF−t. (5.5.6)

For the case of locally drained conditions, we have δP = δP ′ and thus, it is straight forward
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to show that the Eulerian acoustic tensor takes the classical form [64, 152]

Aik ≡ Adik = nja
ep
ijklnl (5.5.7)

where aep
ijkl are the components of the total tangent operator defined in equation (5.4.37).

Similarly, for the locally undrained case, we have q = 0 point-wise, and consequently the

equation of balance of mass (5.2.14) reduces to

ϑ̇ = −
(
J
Kf

φf
− ϑ

)
∇x·v. (5.5.8)

Taking the time derivative of P and utilizing equation (5.5.6), results in the undrained rate

equation

δP =

[
Aep +

(
J
Kf

φf
− θ

)
F−t ⊗ F−t + θF−t ⊖ F−1

]

︸ ︷︷ ︸
A

ep

: δF , (5.5.9)

where Aep and A
ep

are the drained and undrained first elastoplastic tangent operators,

respectively. Therefore, in this case we have

A = Ad + J
Kf

φf
n ⊗ n. (5.5.10)

We note that the undrained acoustic tensor consists of the drained acoustic tensor plus a

volumetric contribution emanating from the compressibility of the fluid phase. The expres-

sion for the acoustic tensor derived above is very similar to that obtained by Borja in [46]

for the case of infinitesimal deformations.

Remark 11. The spectral search algorithm proposed by the authors in [152] is utilized in

the next section to search for the onset of strain localization under both locally drained

and locally undrained conditions utilizing suitable expressions for the acoustic tensor as

obtained above.

5.6 Numerical simulations

In this section, several globally undrained plane strain compression test are performed.

Macroscopically dense and loose samples of sand with and without inhomogeneities at the

meso-scale are sheared to failure, whenever possible. The objective of these boundary-value
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problems is to study the effect of meso-scale inhomogeneities in the porosity on the stability

and flow characteristics of sand specimens. It will be shown that the inhomogeneities,

even though small, have a profound impact on the macroscopic behavior of the samples.

Furthermore, it is shown that the constitutive model used to describe the effective stress

for the underlying sand specimens captures some of the main features observed in sand

specimens tested in the laboratory.

The material parameters utilized in the simulations are summarized in Tables 5.1 and

5.2. We refer the reader to Section 5.3 for details regarding the material parameters and

their significance.

Symbol Value Parameter

κ̃ 0.03 compressibility
α0 0 coupling coefficient
µ0 2000 kPa shear modulus
p0 −99 kPa reference pressure
ǫev0 0 reference strain

Table 5.1: Summary of hyperelastic material parameters for plane strain compression prob-
lems.

Symbol Value Parameter

λ̃ 0.04 compressibility
M 1.2 critical state parameter
vc0 1.8 reference specific volume
N 0.4 for yield function

N 0.2 for plastic potential
̺ 0.78 ellipticity
h 280/70 hardening coefficient for dense/loose samples

Table 5.2: Summary of plastic material parameters for plane strain compression problems.

5.6.1 Plane strain compression in globally undrained dense sands

In this subsection, we present the results obtained from performing globally undrained

plane strain compression simulations on both inhomogeneous and homogeneous samples of

dense sand. The inhomogeneous sample is constructed by prescribing a randomly generated

specific volume field, which displays a higher horizontal than vertical correlation. The

inhomogeneous sample is shown in Figure 5.4 where the initial specific volume field is
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Figure 5.4: Initial specific volume for dense sand specimen superimposed on undeformed
finite element mesh.

superimposed on the undeformed finite element mesh. The sample is 5 cm wide and 10 cm

tall and has been discretized using a mesh composed of 200 Q9P4 isoparametric elements

[nine displacement nodes plus four (continuous) pressure nodes]. This kind of finite element

has been shown to satisfy the Babuška-Brezzi stability condition and hence avoid stability

problems associated with consolidation of porous media (see end of Section 5.4 for discussion

on stability). The mean specific volume for the sample is 1.572, making the sample dense

macroscopically. However, some pockets are relatively loose with specific volume as high as

1.64. The range in the specific volume for the dense sample is 1.54–1.64.

The boundary conditions for the numerical experiments are as follows. The top and

bottom faces of the sample are supported on rollers (Dirichlet BCs) with the bottom left

corner fixed with a pin for stability. The bottom face is constrained from displacing in

the vertical direction, whereas the top face is given a vertical displacement responsible

for compacting the sample in the axial direction. At the same time, the lateral faces

are confined with an initial pressure of 100 kPa (Newman BCs) to simulate the confining

pressure in a plane strain device. As for the boundary conditions associated with the

flow equations, all faces of the sample are no-flow boundaries (Dirichlet BCs), provoking

a globally undrained condition (although the permeability is finite locally and so there

is a locally drained condition). This condition is equivalent to having an impermeable
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membrane surrounding the specimen, which is typically used in undrained compression

tests in the laboratory. The testing conditions favor homogeneous deformations in the

absence of material inhomogeneities and gravity effects.

The inhomogeneous sample of dense sand is loaded monotonically until failure. Figure

5.5(a) shows a plot of the determinant for the drained acoustic tensor at a deformed state

after 5% nominal axial deformation. Also, the figure shows the contour of deviatoric strains

at 5% axial strain with superimposed relative fluid flow vectors q in subfigure (b). The in-

stant in time is selected so as to show a fully developed deformation band and to underscore

the need for a finite deformation formulation. The developed deformation band allows for

several interesting observations. It can be seen that the vanishing of the determinant for

the drained acoustic tensor Ad correlates very well with areas of intense localized deviatoric

strains. Furthermore, the flow vectors q superimposed on both the contour for the deter-

minant function and the contour for the deviatoric strain clearly show a strong influence of

the deformation band on the flow characteristics in the sample. In fact, in this particular

case, the deformation pattern appears to be ‘attracting’ the flow into the deformation band

and away from the rest of the sample. This suggests a mostly dilative behavior of the sand

within the deformation band, which will certainly tend to attract fluid flow.

The dilative behavior of the sand specimen can be clearly observed in Figure 5.6(a)

where the contour for the volumetric strains is plotted against the deformed finite element

mesh at an axial strain of 5%. Distinct areas of dilative (positive) volumetric response

can be identified along the developed deformation band. This behavior is consistent with

the signature behavior of relatively dense sands in the laboratory, which mostly tend to

dilate during shear deformation [74, 153]. This dilative response has been also reproduced

by plasticity models such as Drucker-Prager, which account for plastic dilation [143, 144]

. This important feature is captured by the model developed herein by including meso-

scale information about the porosity (and hence relative density) in the hardening law via

the state parameter ψi. Because of the coupling effect between the response of the porous

medium and the fluid flow, Figure 5.6(b) shows distinct areas of low Cauchy fluid pressures

corresponding to those where the volumetric response is dilative. In fact, it is obvious from

the figure that strong gradients in the fluid pressure are generated and are consistent with

the deformation pattern of the sample and are responsible for the amount and direction

of fluid flow. It should be noted at this point that because of the small dimensions of the

sample, gravitational effects do not play a major role and hence there is not much meaning
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Figure 5.5: (a) Contour of the determinant function for the drained acoustic tensor at a
nominal axial strain of 5% and (b) deviatoric strains in contour with superimposed relative
flow vectors q at 5% axial strain for dense sand sample.

in distinguishing ‘excess’ pore fluid pressure from total pore fluid pressure.

At this point, it is clear that the deformation pattern is strongly coupled with the fluid

flow, but it is not clear what the role of the meso-scale is in the overall stability of the

undrained sample. To shed some light into this question, we compare the response of the

inhomogeneous sand sample against its homogeneous counterpart. This type of analyses

has been performed before in the context of drained or effective material response (e.g.,

see [122, 152] for analyses on ‘dry’ samples of dense sand). In these previous studies, it

was found that the meso-scale is responsible for triggering instabilities at the specimen

scale, reducing the load carrying capacity of the sample of dense sand. The same type of

analysis is performed here with very similar results. The force-displacement curves for both

inhomogeneous and homogeneous samples of dense sand are plotted in Figure 5.7. In this

figure, the reactive stresses at the top face of the samples are plotted against the nominal

axial strain. The homogeneous sample is constructed by imposing a constant value of initial

specific volume at 1.572 (the mean value of the distribution shown in Figure 5.4). The load-

displacement responses are superimposed on each other for the first 2% axial strain, at

which point the inhomogeneous sample bifurcates (both drained and undrained acoustic
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Figure 5.6: (a) Volumetric strain contour superimposed on deformed finite element mesh at
5% axial strain and (b) contour of Cauchy fluid pressure p on deformed sample at 5% axial
strain (in kPa) for dense sand sample. Dotted lines delineate undeformed configuration.

tensors loose positive definiteness at about 1.9% axial strain). The homogeneous sample

does not localize and in fact continues to harden until the end of the simulation at 4% axial

strain. On the other hand, after localization is detected in the inhomogeneous sample, the

response is characterized by softening and the sample does not recover its load carrying

capacity.

Localization above is defined as the first time either the drained or undrained acoustic

tensor loses positive definiteness at any (Gauss) point in the sample. The point where the

sample localized for the first time is shown in Figure 5.4 and referred to as point A. The

determinant functions for both drained and locally undrained acoustic tensors at point A

are plotted in Figure 5.8. Localization occurred around 1.9% nominal axial strain when

both determinants for the drained and undrained acoustic tensor went negative for the first

time. In this particular case, both localization criteria coincided, but in cases when the point

in question was below the critical state line, the drained localization criterion superseded

the undrained criterion. In this particular simulation, we never observed the determinant

of the undrained acoustic tensor vanishing before that of the drained acoustic tensor.
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Figure 5.7: Force-displacement curve for inhomogeneous and homogeneous samples of dense
sand.
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Figure 5.8: Normalized determinant functions at point A for dense sand sample.
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Figure 5.9: (a) Deviatoric strain invariant at Gauss point A for sample of dense sand (b)
volumetric strain invariant at Gauss point A for sample of dense sand.

Once localization occurs at point A, the modes of deformation tend to change consider-

ably at that location. As expected, deviatoric deformations are magnified once localization

is detected. The volumetric and deviatoric strain invariants are plotted in Figure 5.9 where

it is easily seen that after 1.9% axial strain, the slope of the deviatoric strain curve is about

five times steeper than before localization is detected. Also, the point in question seems

to compact very little initially, followed by significant dilation, which is consistent with the

macroscopic behavior of dense sands. The volumetric behavior of point A can be further

observed from Figure 5.10 where the specific volume at that point is plotted against the

effective pressure and the CSL for the material is plotted for reference. It is interesting to

note that even though point A lies above the critical state line, its volumetric behavior is

closer to that of a drained point below the CSL. This is because the rest of the sample is

behaving macroscopically as a dense sand and the coupling between the solid matrix and

the fluid flow is really what governs deformation. The matrix at point A may ‘want’ to

contract, but the fact that point A is more permeable that some other parts of the sample

makes it easier for the fluid to flow into point A and hence force it to dilate. This last obser-

vation shows that the saturated behavior of a globally undrained sample could be sharply

distinct to that of a perfectly drained one.
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Figure 5.10: Specific volume plot as a function of effective pressure at point A for dense
sand sample

5.6.2 Plane strain compression in globally undrained loose sands

To obtain a somewhat complete picture of the behavior of saturated granular materials un-

der shear deformations, globally undrained compression tests are performed on samples of

macroscopically loose sands. In this set of tests, we compare the response of an inhomoge-

neous sample of sand against its homogeneous counterpart. As in the previous subsection,

the initial inhomogeneity is furnished by the initial distribution of specific volume, which

follows a pattern identical to that shown in Figure 5.4 above. The only difference here is

the range and mean of the distribution in order to reflect a macroscopically loose sample

of sand. The initial range of specific volume for the loose sample is depicted in Figure 5.11

and goes from 1.62 to 1.66. This particular range is much narrower than that chosen in the

previous set of simulations, the sample appears to be more homogeneous than the dense

sand sample. The average specific volume for the sample of loose sand is 1.62 (cf. with

that for the dense sand sample at 1.572). This average value of specific volume puts the

sample above the CSL on average and hence we expect the behavior of the structure to

be macroscopically similar to a homogeneous sample of loose sand. As for the rest of the
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Figure 5.11: Initial specific volume for loose sand specimen superimposed on undeformed
finite element mesh.

material parameters, they are almost identical to those in the previous subsection and are

summarized in Tables 5.1 and 5.2. The only difference in the material parameters between

the dense sand samples and the loose ones is the hardening coefficient h, which is 280 in

the case of the dense sands and 70 for the loose sands. This reflects the fact that relatively

loose sands show ‘flatter’ force-displacement curves.

The 5×10 cm sample is discretized using the same mesh as the dense sand samples and

the imposed boundary conditions are also identical. Hence, any difference in the behavior

of the structure is due to the different phenomenological behavior implied by the underlying

effective stress constitutive model and triggered by the difference in relative densities. This

is due to the fact that the phenomenological model can realistically capture the difference

in behavior of sand samples at different relative densities.

Similar to the dense sand sample, the inhomogeneous sample of loose sand is loaded

monotonically by prescribing a uniform vertical displacement at the top face of the sam-

ple. Figure 5.12 shows a plot of the determinant of the undrained acoustic tensor and the

deviatoric strain invariant for the loose sand sample at 5% axial strain. The relative flow

vectors q are superimposed on the aforementioned contours to give a relative sense of the

interaction between the deformation and flow patterns. Once again, the instant in time

is chosen such that the deformation band is fully developed. As in the case of the dense
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Figure 5.12: (a) Contour of the determinant function for the undrained acoustic tensor at a
nominal axial strain of 5% and (b) deviatoric strains in contour with superimposed relative
flow vectors q at 5% axial strain for loose sand sample.

sand sample, the localization criterion for the undrained acoustic tensor A correlates very

well with high concentrations of deviatoric strains in the sample. In fact, the profile for

the determinant of the drained acoustic tensor Ad looks similar with a different order of

magnitude throughout. The deformation pattern again influences the flow characteristics

in the sample but with an opposite effect to that observed in the dense sample. For the case

of loose sand deforming under globally undrained conditions, the incipient shear band ap-

pears to be ‘repelling’ fluid flow. This deformation-diffusion behavior suggests a compactive

behavior within the shear band compared to a relatively less compressive and perhaps even

dilative deformation pattern elsewhere in the sample. Another contrasting feature is the

fact that the deformation band is initially (at lower values of axial strain) less pronounced

and less localized and looks more diffuse than that for the dense sample, which is again

consistent with the behavior of relatively loose sands which tend to fail in a more diffuse

mode in the laboratory. These seem to be a novel results since, as far as we know, no results

showing compactive shear bands repelling fluid flow have been reported in the literature

(e.g. see works by Armero [143] and Larsson and Larsson [144] who only report dilative

shear bands).
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Figure 5.13: (a) Volumetric strain contour superimposed on deformed finite element mesh at
5% axial strain and (b) contour of Cauchy fluid pressure p on deformed sample at 5% axial
strain (in kPa) for loose sand sample. Dotted lines delineate undeformed configuration.

The suggested compactive behavior within the deformation band is truly appreciated

when one plots the volumetric strain invariant at 5% axial strain. Figure 5.13(a) shows

such deformation contour superimposed on the deformed finite element mesh. There are

well-defined pockets of compactive behavior on what can be defined as the ends of the

deformation band. The rest of the band is not as compactive (in fact the center is slightly

dilating) as the ends, but the upper-right and lower-left corners are much more dilative in

comparison to the band. This is the reason why the fluid pressure contour shown in 5.13(b)

looks like a saddle. There is a relative low at the center of the band (and the specimen)

but there are maxima at the ends of the deformation band. The dilative pockets described

above constitute regions where the Cauchy fluid pressure p is at a minimum in the sample.

This explains the direction of the relative flow, which tends to go away from the ends of the

deformation band, towards the center of the band and in general away from the band (see

Figure 5.12 above). This pressure and flow pattern is clearly different from that observed

in the sample of dense sand and is consistent with the behavior of an undrained sample of

relatively loose sand.

The effect of the inhomogeneities in the porosity field at the meso-scale can be seen by
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Figure 5.14: Force-displacement curve for inhomogeneous and homogeneous samples of loose
sand.

comparing the force-displacement curve for the inhomogeneous sample against that of the

homogeneous sample. Figure 5.14 shows a plot of the nominal axial stress at the top face

for both inhomogeneous and homogeneous samples of loose sand. The curves are clearly

identical up to about 2.4% axial strain point at which the inhomogeneous sample localizes

and subsequently softens. The homogeneous sample did not localize by any criterion and

did not show any signs of softening up to 4% axial strain. The fact that the curves coincide

up to the point of bifurcation suggests that the effect of the meso-scale inhomogeneity is

minimal early in the deformation-diffusion process. However, it is clear that the inhomo-

geneities ultimately alter the load-carrying capacity of the inhomogeneous sample, which is

macroscopically softer than its homogeneous counterpart. Also note the flatter slope in the

force-displacement curves obtained for the loose sample than those for the dense sample; a

direct effect of the relative density and hardening coefficient.

The localization point at 2.4% axial strain is defined by the vanishing of the determinant

of both drained and undrained acoustic tensors at point A, which is depicted in Figure 5.11.

Both localization criteria are met at the same time at point A and hence there is no room

for ambiguity when one speaks of loss of positive definiteness of the acoustic tensor. It is



148 CHAPTER 5. MODELING DEFORMATION BANDING IN SATURATED SANDS

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.2

0

0.2

0.4

0.6

0.8

NOMINAL AXIAL STRAIN, %

N
O

R
M

A
LI

Z
E

D
 D

E
T

E
R

M
IN

A
N

T DRAINED CRITERION
UNDRAINED CRITERION

LOCALIZATION

Figure 5.15: Normalized determinant functions at point A for loose sand sample.

interesting to note that localization occurs first at the same point in both dense and loose

samples. This might be due to the fact that this point is relatively looser in both specimens

and hence tends to fail first in both instances. Figure 5.15 shows a plot of the normalized

determinant for both the drained and locally undrained acoustic tensors. It is observed

that both determinants vanish at around 2.4% axial strain. In this simulation, all points

that lost positive definiteness of the acoustic tensor did so for the drained and undrained

acoustic tensors at the same time. Comparison with the dense sand simulation shows that

localization was attained at a later time, which suggests a more ductile behavior associated

with the loose sand sample.

It is interesting to observe the modes of deformations at point A in the sample before and

after localization is attained. As in the dense sand sample, point A exhibits a steepening

in the slope of the deviatoric strain after localization, which is shown in Figure 5.16(a).

In fact, the sample exhibits three times more deviatoric deformation in the last 1.6% axial

strain than in the first 2.4% axial strain. Also, point A remains basically incompressible

up to the onset of localization. Figure 5.16(b) shows the volumetric strain invariant versus

axial strain, where it is observed that point A did not change in volume until it reached
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Figure 5.16: (a) Deviatoric strain invariant at Gauss point A for sample of loose sand (b)
volumetric strain invariant at Gauss point A for sample of loose sand.

localization, after which point it compacted quite a bit. In this case, which can be contrasted

to the case of the dense sample of sand, point A behaves more as a typical ‘drained’ point

after localization: experiencing volume loss, which leads to an area of high pressure because

the fluid cannot escape fast enough. Figure 5.17 shows the relation between specific volume

and the mean Kirchhoff effective pressure. The specific volume is pretty much constant up

to the onset of localization and subsequently the state is attracted towards the CSL. Once

again, the behavior at point A is of course affected by the surrounding area in the sample

and also, and perhaps more importantly, by the coupling imposed by the balance laws.

Finally, Figure 5.18 shows the convergence profile at various stages in the loading pro-

tocol for the plane strain compression test on the inhomogeneous sample of loose sand.

Consistent linearization performed in the proposed finite element procedure, combined with

the fact that the effective stress constitutive model features a consistent tangent operator

available in closed form [152], leads to an overall rate of convergence that enjoys the optimal

quadratic rate associated with the full Newton-Raphson scheme. Furthermore, the fact that

finite elements satisfying the Babuška-Brezzi stability condition are utilized, translates into

solutions free of spurious oscillations in the fluid pressure associated with instabilities near

initial time when the sample behaves as an undrained incompressible solid [170, 172].

Remark 12. It is important to note that the finite element solutions presented above do

suffer from mild pathological mesh dependence once the onset of localization has been
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Figure 5.17: Specific volume plot as a function of effective pressure at point A for loose
sand sample
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Figure 5.18: Convergence profile at various values of axial strain for plane strain compression
test on sample of loose sand.

detected. It has been show by Zhang and Schrefler [176] that even though the fluid flow

equation introduces a length scale via the permeability coefficient, it might not be enough

if the effective stress equations are not further regularized by, say, adding a viscous term.

However, the conclusions reached above are qualitative and should not be affected by this

detail.

To illustrate this ‘mild’ dependence, we perform a simple mesh sensitivity study. For

simplicity, we solve same boundary value problem presented above in Section 5.6.1. Consider

the same homogeneous sample with specific volume v = 1.572 but with an arbitrary ‘weak’

region (i.e., v = 1.6) in the specimen as illustrated in Figure 5.19. Two meshes are analyzed:

one consisting of 50 Q9P4 elements and another one consisting of 200 such elements. The

results of the undrained compression tests are summarized in Figures 5.20 and 5.21. Figure

5.20 shows the force displacement curves for the 50 and 200 element mesh compared against

the perfectly homogeneous response (i.e., v = 1.572 throughout). It is shown that the

perturbed samples are less stiff than the homogeneous sample and that the responses of the

two inhomogeneous samples are identical up to 3% axial strain, corresponding to a level
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Figure 5.19: Perturbed samples of dense sand with otherwise homogeneous specific volume
v = 1.572. (a) Mesh composed of 50 Q9P4 elements and (b) mesh composed of 200 Q9P4.

of strain passed the drained localization criterion. In fact both inhomogeneous samples

detect the onset of drained localization simultaniously, as expected. By the time undrained

localization is detected in the fine mesh sample, the force displacement curves are starting

to diverge.

Figure 5.21 shows the deviatoric strains with superimposed relative flow vectors on both

finite element meshes. It is clear that the apparent width of the shear band is a function

of the element size; the width of the shear band decreases proportional to the element size.

However, the pattern of deformation and the direction of flow is identical in both samples.

Both samples develop dilative shear bands that tend to attract fluid flow. Hence, we say

mesh dependence is ‘mild’ as both meshes display the same overall mechanical behavior:

both predict softer responses, identical onset of drained localization, and appearance of

dilative shear bands.
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Figure 5.20: Force displacement curves comparing perfectly homogeneous response to that
of perturbed samples
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Figure 5.21: Deviatoric strains in contours with superimposed relative flow vectors q at 3%
axial strain for (a) 50 element mesh and (b) 200 element mesh
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5.7 Conclusion

We have presented a finite element model for the simulation of saturated porous media

exhibiting meso-scale inhomogeneities in the porosity field. The continuum balance laws

have been derived and utilized within a finite element framework from which the basic un-

knowns: solid displacements and Cauchy pore fluid pressures have been resolved in a u− p

mixed finite element scheme. The scheme features stable solutions with optimum rates of

convergence. Representative numerical examples dealing with plane strain compression of

undrained samples of dense and loose sands have been presented to underscore the im-

portance of meso-scale inhomogeneities on the stability and flow characteristics through a

deforming sand specimen. We have shown that behavior of saturated granular media is

more complex than that inferred from macroscopic observations and that even small im-

perfections at a scale smaller than specimen size can trigger global failure and influence

the amount and direction of flow. Furthermore, the behavior of relatively dense and loose

samples differ substantially as the volumetric behavior of the solid matrix is coupled with

the fluid flow, hence affecting the effective pressures, which govern strength in geomaterials.

These last observations are unique to this study in which porosity has been coupled with

the hydraulic conductivity and effective stress behavior of the underlying granular media,

thereby capturing both compactive and dilative modes of deformation banding.



Chapter 6

Conclusion and future work

We have proposed a meso-scale numerical model for predicting the location and direction of

deformation banding in saturated sands. A novel constitutive model for sands was developed

with the objective of capturing the most important features of sand behavior: nonlinear-

ity and irrecoverable deformations, pressure dependence, different strength under triaxial

compression/extension, relative density dependence, and nonassociative plastic flow. The

elastoplastic constitutive model developed herein uniquely captures all of these features and

is capable of accounting for spatial fluctuations in the porosity field, as measured, for exam-

ple, by X-Ray Computed Tomography. For sands, the meso-scale resolution of the porosity

field is in the millimeter scale. Motivated by the fact that CT technology can capture meso-

scale defects in samples of sand, we have demonstrated that these imperfections—though

small—must be taken into account when analyzing the behavior of sand specimens.

The meso-scale constitutive model was implemented in a nonlinear continuum mechan-

ics framework by designing a return mapping algorithm along the principal directions of

deformation. From the return mapping algorithm, the consistent tangent operator was

obtained in closed form and utilized in the finite element implementation of the model to

guarantee asymptotic quadratic rate of convergence. Numerical simulations at large strains

were performed for drained samples of dense sands under plane strain and triaxial condi-

tions. Both structured and unstructured porosity fields were used in the simulations. It

was concluded that the meso-scale inhomogeneities in the porosity consistently triggered

instabilities in the form of deformation bands. Localization was detected using a search

algorithm designed to exploit the spectral directions of the stress tensor, making the 3D

search very efficient.
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Comparisons between inhomogeneous samples and their homogeneous counterparts

showed that, after some axial deformation, the meso-scale inhomogeneities triggered insta-

bilities that were unique to the inhomogeneous samples. Consistently, homogeneous and

inhomogeneous samples predicted initially identical force-displacement curves, with homo-

geneous samples becoming stiffer after the inhomogeneities triggered softening and/or strain

localization in the perturbed samples. This last observation is critical as it shows that, since

the inhomogeneities do not influence the mechanical behavior of samples from the onset, it

is possible to calibrate the meso-scale model based on data from laboratory tests on ‘homo-

geneous’ specimens during the phase when the responses are identical. We plan to exploit

this nice feature in a subsequent calibration phase, where we will couple the model with

experimental results obtained in the laboratory.

The question of soil-fluid interaction and the effect of drainage has also been analyzed

in this dissertation against the backdrop of the proposed meso-scale constitutive model.

The mixture theory and nonlinear continuum mechanics have been invoked to derive the

balance laws governing the deformation-diffusion process in saturated bodies. A mixed

u − p formulation was developed to solve the balance laws in time and space. Numerical

simulations of plane strain compression under globally undrained conditions in samples of

loose and dense sands were conducted. Results were consistent with the findings under

drained conditions: meso-scale inhomogeneities (even small ones) trigger instabilities that

lead to the development of shear bands. These bands influence the flow characteristics in

the sample as they tend to attract flow in the case of dense sands but rather repel flow in

the case of loose sands. This is a direct consequence of the fact that dense sands behavior

is mostly dilative, whereas that of loose sands is mostly contractive. To the knowledge of

the author, all results reported in the literature show dilative shear bands attracting fluid

flow. This is the only work showing the effect of compactive shear bands repelling fluid

flow. This model is capable of capturing these effects because it accounts for the influence

of relative density explicitly as well as plastic dilation/compaction.

It is concluded that meso-scale inhomogeneities, which are inevitably present in ‘homo-

geneous’ samples of sand, play a crucial role in the mechanical behavior of specimens under

drained and undrained conditions at finite strains.

Possible improvements of this work include implementing the theory developed in Chap-

ter 5 in three dimensions. Even though the framework is fully three-dimensional, the numer-

ical examples are all in plane strain. It is necessary to implement the model utilizing brick
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elements equipped with the mixed formulation. One has to be careful, however, as satisfac-

tion of the Babuška-Brezzi condition in 3D is not straight-forward. Therefore, development

of stabilized nonlinear finite elements may become necessary to avoid stability problems

associated with the deformation-diffusion problem near time t = 0+. Another possible

(and necessary) improvement of this work, is the use of enhanced elements to circumvent

the mesh dependence associated with the onset of strain localization. This improvement

would allow for a more robust post-localization simulation. Also, it is necessary to de-

velop and implement post-bifurcation constitutive models for sands to be able to simulate

post-localization behavior more realistically.

Development of meso-scale models based on particulate mechanics is also possible but

outside the scope of this dissertation. The approach here has been to develop a purely

continuum formulation including information at the meso-scale. One can imagine that a

multi-scale approach looking at the inter-particle behavior, and then transferring stress-

strain responses to the macro-scale or for calibrating the already existing meso-scale model

at the gauss points, is quite plausible. The effects of boundary conditions need also be

investigated. It is well know that the end platens in compression tests—even well lubricated

ones—introduce friction at the boundaries that makes the deformation inhomogeneous. It

is therefore necessary to incorporate these end constrains by using, for example, contact

elements to simulate the effect of friction from the platens.

The aspect of diffuse instabilities has been explicitly avoided in this dissertation but

should be studied in the near future as it could open doors to the understanding and

simulation of important instabilities mostly associated with loose sands. Diffuse instabilities

such as liquefaction must be studied in order to predict the catastrophic effects associated

with this phenomenon under fully dynamic excitations.
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Finite element u − p formulation

Equation (5.4.42) can be rewritten in indicial notation as

δg1 = ciA

∫

Ω0

[
NA,j

(
aep
ijkl + Jp (δilδjk − δijδkl)

)
NB,lδdBk − JNA,iNBδpB

]
dΩ0, (A.0.1)

following the notations in [119] (cf. equations (5.4.49) and (5.4.51)),

ui ≈
∑

A∈η−ηd

NAdiA +
∑

A∈ηd

N ξ
AξA (A.0.2)

p ≈
∑

A∈η−ηp

NApA +
∑

A∈ηp

N ζ
AζA (A.0.3)

ηi ≈
∑

A∈η−ηd

NAciA (A.0.4)

ψ ≈
∑

A∈η−ηp

NAcA (A.0.5)

where η and η denote the set of global node numbers for the displacement and pressure,

respectively. Similarly, we let ηd and ηp be the nodes at which the displacements and

pressures are prescribed, hence η−ηd and η−ηp represent the active sets for the displacement

and pressure, respectively. By the same token,

δg2 = −ciA
∫

Ω0

JNAγfi

[
NB,jδdjB +

φf

Kf
NBδpB

]
dΩ0. (A.0.6)
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The linearized equations pertaining to the balance of mass equations can also be rewrit-

ten in indicial notation i.e.,

δh∆t
1 = cA

∫

Ω0

JNAρf

[
NB,jδdjB +

φf

Kf
NBδpB

]
dΩ0, (A.0.7)

and

δh∆t
2 =

α∆t

g
cA

∫

Ω0

Jkij
[
NA,iNB,kδdkB −NA,kNB,iδdkB

]
(p,j − γfj) dΩ0

+
α∆t

g
cA

∫

Ω0

J

µ
NA,iδijk

′γf

(
1 − φf

)
NB,kδdkB (p,j − γfj) dΩ0

+
α∆t

g
cA

∫

Ω0

JNA,i
kij
Kf
NBδpB (p,j − γfj) dΩ0

+
α∆t

g
cA

∫

Ω0

JNA,ikij

[
NB,jδpB − γfj

Kf
NBδpB − p,kNB,jδdkB

]
dΩ0. (A.0.8)

From this point forward we adopt Voigt notation and hence, a fourth-order tensor α is

mapped into a 9 × 9 array i.e.,

α =




[αiikk]
[
αii(kl)

] [
αii[kl]

]
[
α(ij)kk

] [
α(ij)(kl)

] [
α(ij)[kl]

]
[
α[ij]kk

] [
α[ij](kl)

] [
α[ij][kl]

]


 (no sum) (A.0.9)

where i, j, k, l = 1, 2, 3, and i 6= j and k 6= l. Also, each submatrix in square brackets

represents a 3 × 3 array. For example,

[
α(ij)[kl]

]
=




α(12)[12] α(12)[23] α(12)[31]

α(23)[12] α(23)[23] α(23)[31]

α(31)[12] α(31)[23] α(31)[31]


 , (A.0.10)

where the parentheses signify a symmetric operator, whereas the square brackets signify a

skew-symmetric operator. For example,

α(12)[23] =
1

4
(α1223 − α1232 + α2123 − α2132) . (A.0.11)



161

Similarly, a second-order tensor ∇x η is mapped into a 9 × 1 vector i.e.,

∇x η =
{
η1,1, η2,2, η3,3, 2η(1,2), 2η(2,3), 2η(3,1), 2η[1,2], 2η[2,3], 2η[3,1]

}t
(A.0.12)

such that the scalar product ηi,jαijklηk,l ≡ ∇x ηtα∇x η is recovered. Also, given the finite

element approximations in (5.4.51)1,2 we have

∇x η = Bc (A.0.13)

∇xψ = Γc, (A.0.14)

where B is the usual strain-displacement matrix i.e., B = [B1,B2, . . . ,Bnu], and

BA =




NA,1 0 0

0 NA,2 0

0 0 NA,3

NA,2 NA,1 0

0 NA,3 NA,2

NA,3 0 NA,1

NA,2 −NA,1 0

0 NA,3 −NA,2

−NA,3 0 NA,1




. (A.0.15)

By the same token, the matrix Γ = [Γ1,Γ2, . . . ,Γnp]. The components of Γ read

ΓA =
{
NA,1, NA,2, NA,3

}t
. (A.0.16)

It is convenient at this point to introduce the following operators. Let a be a vector or

first-order tensor with components ai with i = 1, 2, 3, then let

ǫ (a) =




a1 0 0 1
2a2 0 1

2a3
1
2a2 0 −1

2a3

0 a2 0 1
2a1

1
2a3 0 −1

2a1
1
2a3 0

0 0 a3 0 1
2a2

1
2a1 0 −1

2a2
1
2a1


 . (A.0.17)
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Similarly, let β be a third-order tensor with components βijk where i, j, k = 1, 2, 3, then

r (βijk) =
[

[βikk]
[
βi(jk)

] [
βi[jk]

] ]
(no sum) (A.0.18)

where j 6= k within the 3 × 9 array. Each submatrix in square brackets represents a 3 × 3

array, for instance,

[βikk] =




β111 β122 β133

β211 β222 β233

β311 β322 β333


 (A.0.19)

Using the arrays and mappings presented above, we can write the matrix equation for

the iterative Newton-Raphson scheme. The variational form for the equation of linear

momentum implies

Rk
g =

[
Kg Φg

]

k

{
δd

δp

}

k+1

, (A.0.20)

where

Kg =

∫

Ω0

[
Bt (aep + Jp (1 ⊖ 1 − 1 ⊗ 1))B − N tγfJδtB

]
dΩ0 (A.0.21)

Φg = −
∫

Ω0

J

[
BtδN + N tγf

φf

Kf
N

]
dΩ0, (A.0.22)

with δ = {1, 1, 1, 0, 0, 0, 0, 0, 0}t. Similarly, the variational form for the integrated (in time)

equation of balance of mass implies

Rk
h =

[
Kh + α∆tKh Φh + α∆tΦh

]

k

{
δd

δp

}

k+1

, (A.0.23)



163

where

Kh =

∫

Ω0

N
t
Jρfδ

tB dΩ0 (A.0.24)

Φh =

∫

Ω0

N
t
Jρf

φf

Kf
N dΩ0 (A.0.25)

Kh =

∫

Ω0

J

g
Γt
[(

k +
k′

µ
γf

(
1 − φf

)
1

)
· (∇x pf − γf)

]
δtB dΩ0

−
∫

Ω0

J

g
Γt [ǫ (k · (∇x p− γf)) + r (kikp,j)]BdΩ0 (A.0.26)

Φh =

∫

Ω0

J

g
Γtk

[
1

Kf
(∇x p− γf)N + Γ

]
dΩ0, (A.0.27)

and hence the incremental solution in equation (5.4.57).
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